• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Geometric analysis on metrics of the moduli of punctured Riemann surfaces

Research Project

  • PDF
Project/Area Number 18K03338
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKagoshima University

Principal Investigator

Obitsu Kunio  鹿児島大学, 理工学域理学系, 准教授 (00325763)

Co-Investigator(Kenkyū-buntansha) 愛甲 正  鹿児島大学, 理工学域理学系, 教授 (00192831)
近藤 剛史  鹿児島大学, 理工学域理学系, 准教授 (60467446)
Project Period (FY) 2018-04-01 – 2023-03-31
Keywordsリーマン面 / タイヒミュラー空間 / ケイラー計量 / 漸近挙動 / アイゼンシュタイン級数 / 双曲計量
Outline of Final Research Achievements

Main goal of this project was that we would reveal fundamental properties of the Takhtajan-Zograf metric on Teichmuller spaces of punctured Riemann surfaces. one of the main results obtained in this project is the improvement of the estimates of asymptotic boundary behaviors of the Takhtajan-Zograf metric near the boundary of Teichmuller spaces. In the results of my previous collaborate research, there remained unsatisfactory estimates of the main terms of the astmptotics of the metric. Then, in the project, we tried to improve the upper bound of degree of the main term and succeeded to get the optimal order estimate. On the other hand, we failed to improve the lower bound of degree of the main term, which remains to improve.

Free Research Field

複素解析学

Academic Significance and Societal Importance of the Research Achievements

Takhtajan-Zograf計量は、Weil-Petersson計量のタイヒミュラー空間の境界における漸近展開の第2項として現れることを、2008年にWolpert氏と共同で示したが。この結果はここ数年、何人かの数理物理学者によって注目され、これを応用した超弦理論の研究が進み始めている。これは期待した通りの研究の進展であり、今後ともTakhtajan-Zograf計量の基本的性質を探求していくことは、大いに意義あることと考えられる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi