2022 Fiscal Year Final Research Report
Research on similarities and dissimilarities between the blocking and anti-blocking polyhedra
Project/Area Number |
18K03388
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12030:Basic mathematics-related
|
Research Institution | Yamagata University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Keywords | 期待到達時間 / フィボナッチ数列 / Tutte多項式 / Pebble motion problem / safe set problem / Packing and Covering |
Outline of Final Research Achievements |
Proved a beautiful relationship between the expected arrival time of the squared graph of cycles and the Fibonacci number, generalizing the Tutte polynomial and the Pebble Motion Problem; overturned Ehard & Rautenbach's conjecture of connected safe set minimization in point weighted trees Showed that the problem belongs to FPTAS, solving one of the open problems of Tittmann et al [Eur J Combin 32, 2011]; partial solution of a conjecture of Cornuejols, Guenin and Margot; first in the world to show that the Tutte polynomial problem belongs to FPTAS. Gives, for the first time in the world, a combinatorial interpretation for the Tutte polynomial at (x, y) = (2, -1).
|
Free Research Field |
離散数学、組合せ最適化
|
Academic Significance and Societal Importance of the Research Achievements |
離散数学の幅広い分野において(期待到達時間、Tutte多項式、Pebble Motion Problem、Safe Set Problem、Clutter Packing and Covering Problemなど)に対し、複数の未解決問題を解決し、既存の枠組みの一般化を行った。特筆すべき結果としては、世界で初めて Tutte polynomialの(x, y) = (2, -1)における値に組合せ論的解釈を与えたことなどが挙げられる。
|