• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Reduction of the degreess of freedom of dynamical systems by machine learning

Research Project

  • PDF
Project/Area Number 18K03469
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
Research InstitutionToho University

Principal Investigator

NOGAWA Tomoaki  東邦大学, 医学部, 講師 (00399982)

Project Period (FY) 2018-04-01 – 2023-03-31
Keywords機械学習 / 非平衡ダイナミクス / 縮約理論 / 相転移ダイナミクス
Outline of Final Research Achievements

In this project, we developed a general framework supported by machine learning to derive closed time-evolution rules for a small number of macroscopic variables, such as internal energy, from the time-evolution rules for a system with large degrees of freedom, such as condensed matter, which has been done by the intuition of researchers in most cases. We examined its usefulness by applying the method to the system with discrete variables such as cellular automata and spin systems (Potts model). These yields a plausible result, e. g., about the relationship between the symmetry of the initial conditions and the minimum degrees of freedom to constitute a closed dynamical system.

Free Research Field

統計物理学

Academic Significance and Societal Importance of the Research Achievements

本研究が対象とするのは、大きな自由度を持つ複雑な系を人間が理解するために不可欠な次元(情報)の削減である。これはあらゆる科学にまたがる極めて普遍的な営みであると言える。統計物理学は特にこれを主たる目的としてきた学問分野であるが、ほとんどの場合には研究者の直観にたよった大胆な近似を行うのが常道であり、近似の妥当性を確立されたミクロなモデルから正当化できることは稀である。本研究では近年発展の著しい機械学習の助けによってデータに基づく根拠を持った縮約モデル(現象論)を構築する新しい方法を提示し、具体的な適用例によって有用性を示した。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi