• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Self-learning continuous-time Monte Carlo method in strongly correlated systems

Research Project

  • PDF
Project/Area Number 18K03552
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 13030:Magnetism, superconductivity and strongly correlated systems-related
Research InstitutionJapan Atomic Energy Agency

Principal Investigator

Nagai Yuki  国立研究開発法人日本原子力研究開発機構, システム計算科学センター, 副主任研究員 (20587026)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywords自己学習モンテカルロ法 / 機械学習
Outline of Final Research Achievements

We applied the self-learning Monte Carlo method to various kinds of fields, such as electron systems, molecular simulations, lattice quantum chromodynamics. For example, in the field of the molecular simulations, we developed self-learning hybrid Monte Carlo method, which is one of the best tools to generate very accurate neural network potentials.

Free Research Field

物性理論

Academic Significance and Societal Importance of the Research Achievements

自己学習モンテカルロ法を様々な分野へと適用できることを示した。特に原子分子シミュレーション分野における自己学習ハイブリッドモンテカルロ法は、第一原理分子動力学計算と呼ばれる材料物性分野において非常に重要なシミュレーションを大幅に高速化することが可能であり、学術的な重要性に加えて産業界への応用可能性も考えられる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi