2020 Fiscal Year Final Research Report
Nonlinear Optimal Control Using Structure-Preserving Numerical Integration and Its Extension to Sampled-Data Control
Project/Area Number |
18K04215
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21040:Control and system engineering-related
|
Research Institution | Nanzan University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | 非線形制御 / 数値計算 / 安定多様体法 / 射撃法 / 追従制御 / サンプル値制御 / スパース制御 / モデル予測制御 |
Outline of Final Research Achievements |
New methodology is developed for nonlinear optimal control and for sparse control with aggressive use of numerical computational techniques. On nonlinear optimal control, improvement and extension of a shooting method are considered for efficient choice of initial points in the stable-manifold method. In particular, a shooting method is extended so as to be applicable to the stable-manifold method for nonlinear tracking control. Moreover, nonlinear sampled-data control is considered with the stable-manifold method. On sparse control, its realization is considered by means of model-predictive control. In particular, a numerical method is proposed for computation and expression of a state set corresponding to a specific value of a control input.
|
Free Research Field |
制御工学
|
Academic Significance and Societal Importance of the Research Achievements |
数値計算は制御工学とは異なる分野とされてきたが,その技術を積極的に用いることで制御工学に新しい展開をもたらすことができるのではないかとのアイデアに基づき,非線形最適制御およびスパース制御において成果をあげた.特に非線形サンプル値制御に関する成果は,まだ予備的研究の段階ではあるが,国内外に例がなく,意義が大きいと考えられる.これはもともと数値計算と整合性の高い安定多様体法に,数値的離散化を組み合わせるというものであり,さらに研究する必要があると考える.
|