2021 Fiscal Year Annual Research Report
Development of highly accurate generalized beam theory without any assumption of the displacement field
Project/Area Number |
18K04318
|
Research Institution | Tohoku University |
Principal Investigator |
齊木 功 東北大学, 工学研究科, 准教授 (40292247)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 梁理論 / 断面変形 / 代表体積要素 / そり関数 / ねじり / 変位場 / 構造要素 / 周期境界条件 |
Outline of Annual Research Achievements |
梁理論は,変位場を仮定することで細長い棒の曲げ変形を精度よく簡便に予測する理論である.しかしながら,橋梁に用いられる部材は細長比が比較的小さいために平面保持に基づく変位場の仮定は厳密には成り立たず,その乖離の程度により精度も低下する.これまで,せん断変形に起因した断面変形と,Poisson効果による軸直角面の断面変形について検討を行い,ある程度の成果が得られたので,本年度はねじり変形に伴うそり変位による断面変形に関する検討を行った. 橋軸周りの回転対称性がない断面にねじりが作用すると,断面内に一様でない軸方向変位が生じる.薄肉断面のねじり理論では,この軸方向変位のモードをそり関数と呼んでいる.そり関数は,よく用いられるI形や箱形の薄肉断面では十分な精度の近似が可能である.しかし,厚肉断面や複雑な断面形状,複合断面である場合にはそり関数をあらかじめ用意することは事実上不可能であった.本手法で一貫して用いている梁の代表体積要素に一様単位ねじりを作用させることで,任意断面のそり関数を数値的に求めることが可能となった.数値的に求めたそり関数と,その大きさを表す一般化変位を導入することにより,任意断面のそり変位を考慮した棒のねじり理論を定式化した.定式化したねじり理論の支配方程式は,ねじり角と一般化変位の2元連立常微分方程式であり,数値的に求めたそり関数を断面積分した断面定数を3つ含む. 構築したねじり理論を用いて,I形やH形断面を例とした解析を行い,結果を連続体ソリッド要素による参照解と比較してその精度を確認した.以上から,本解析によれば,任意断面の棒のねじり解析において,精度よくそり変形を考慮することが可能である.
|
Research Products
(2 results)