2020 Fiscal Year Final Research Report
Exploration of stochastic phenomena disobeying the central limit theorem and development of innovative stochastic processes in the structural engineering
Project/Area Number |
18K04334
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 22020:Structure engineering and earthquake engineering-related
|
Research Institution | Kobe Gakuin University |
Principal Investigator |
SATO Tadanobu 神戸学院大学, 現代社会学部, 研究員 (00027294)
|
Co-Investigator(Kenkyū-buntansha) |
木本 和志 岡山大学, 環境生命科学研究科, 准教授 (30323827)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | 非ガウス確率過程 / フラクタル / 位相過程 / レヴィフライト確率密度 / 位相平均勾配過程 / 応答スペクトル準拠地震動 / 設計水平震度 / 降伏震度スペクトル |
Outline of Final Research Achievements |
The purposes of this research are to discover phenomenon that is expressed by the non-Gaussian stochastic feature and to develop a new stochastic process transcends the frame of the modern stochastic theory. The candidate to detect the non-Gaussian feature is the phase spectrum of acceleration time history. There are three topics in this theme. The first is to make clear the non-Gaussian stochastic characteristic of the mean gradient of phase (an approximation of the group delay time). The next is to develop an algorithm to simulate the phase process, which is called as “the Levy flight process”. We applied this phase process to simulate design response spectrum compatible acceleration time histories. Using the simulated acceleration time history we evaluate nonlinear response characteristics of the structural system. The third is to develop a non-Gaussian stochastic differential equation for simulating the time history of acceleration. We discuss a method to solve this equation.
|
Free Research Field |
地震工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の主要目的は、構造工学の分野において、中心新極限定理に従わない確率事象を探索し発見すること、ならびにそれら事象を説明できる新しい確率過程を創出することである。前者はウイナー過程で説明できない工学・物理現象を発見することと同義であり、非ガウス確率則に従う物理現象を発見することであり、見つかれば、工学のみならず物理学的観点から強い関心を浴びるものである。まず、非ガウス系の物理現象として、地震動位相の差分過程に着目し、その確率特性が非ガウス性を示すことを明確にする。
|