• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Development of a reliable and adaptive multi-physics computational method for fluid-structure interactions encountered in ocean/coastal engineering

Research Project

  • PDF
Project/Area Number 18K04368
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 22040:Hydroengineering-related
Research InstitutionKyoto University

Principal Investigator

Khayyer Abbas  京都大学, 工学研究科, 准教授 (80534263)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywordsparticle method / FSI / hydroelastic / composite structures / adaptivity / anisotropic / multiphysics
Outline of Final Research Achievements

The target of this research, i.e. development of an advanced adaptive and multi-physics computational method for hydroelastic FSI, has been achieved through coherent and rigorous developments made with respect to aspects of reliability, adaptivity and generality. A computational method has been developed capable of reproducing hydroelastic FSI including those corresponding to anisotropic composite structures in both 2D and 3D.
The computational method provides possible selection of either Newtonian or Hamiltonian structure model as well as SPH or MPS formalism. With material discontinuities in composites, a robust Hamiltonian structure model was developed and coupled with a fluid model, resulting in ISPH-HSPH FSI solver as the first entirely Lagrangian meshfree method for hydroelastic FSI corresponding to composite structures. The solver was also extended to 3D and carefully modified for structural material anisotropy. These developments are published in a set of international journals.

Free Research Field

Computational mechanics, hydrodynamics

Academic Significance and Societal Importance of the Research Achievements

持続可能な粘り強い海岸構造物の設計のためには複雑な流体と構造物の相互作用(FSI)に関する深い知見が不可欠である.本研究で提案した計算手法はメッシュフリーかつラグランジュ的な解析手法であり,流体・構造体およびその連成のモデル化を厳密な数学的・物理的背景に基づいて導出した,海岸工学FSI現象の高精度かつロバストな解析が可能な手法である.FSI現象の詳細なメカニズムを数値的に検討可能な高精度数値計算手法を開発したことに本研究の社会的意義がある.さらに学術的な意義として,近年世界中で盛んに研究される粒子法の更なる高精度化の実施およびマルチフィジックス現象への高い潜在的適応性の証示があげられる.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi