2020 Fiscal Year Final Research Report
Development of the polymer electrolyte membrane fuel cell having highly active iron complex catalyst for oxygen reduction and an oxide ion moving layer
Project/Area Number |
18K05301
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Kyushu Institute of Technology |
Principal Investigator |
Takase Satoko 九州工業大学, 大学院工学研究院, 助教 (60239275)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | 燃料電池 / 錯体触媒 / 酸素還元 |
Outline of Final Research Achievements |
In order to development of practical fuel cells, an inexpensive and highly durable oxygen reduction catalyst is required. In this study, we focus on inexpensive iron complex catalysts. To improve the stability, I controled the molecular crystal structure and the electrode structure that keep the iron complex catalyst away from the electrolytic film with acidic condition. The complex molecule examined is a planar molecule, which forms a crystal in which the central metal is linearly arranged. The stability is improved by combining with a complex having another metal as the center, such as cobalt.Introduce of the electron-withdrawing ion in the complex molecular crystal improved the catalytic activity.It was suggested that the construction of the structure in which the iron complex catalyst was separated from the electrolytic membrane reduced the influence of hydrogen ions, but the high oxygen concentration condition also contributed to the decrease in activity.
|
Free Research Field |
電気化学
|
Academic Significance and Societal Importance of the Research Achievements |
安価で資源も豊富な鉄化合物触媒が実用化されると車や家庭用の燃料電池の普及が加速される。本研究は、分子単独では耐久性が低い鉄錯体分子をもとに、分子結晶とすることと、結晶内の分子やイオンの組み合わせを変えることで、耐久性と触媒活性が向上することを見出した。分子結晶内の金属の複合化と、それら金属間距離の制御という新規性の高い触媒設計指針は、簡単に合成可能な分子をもとにした実用的な高活性触媒開発につながる可能性がある。
|