• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Optimization and prediction of tomato health-promoting properties by using agricultural big data

Research Project

  • PDF
Project/Area Number 18K05907
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 41040:Agricultural environmental engineering and agricultural information engineering-related
Research InstitutionUniversity of Miyazaki

Principal Investigator

kazufumi Zushi  宮崎大学, 農学部, 教授 (50435377)

Project Period (FY) 2018-04-01 – 2021-03-31
Keywordsトマト / 機能性成分 / 予測モデル / アスコルビン酸 / ポリフェノール / 抗酸化活性
Outline of Final Research Achievements

英文
The aim of this study was to explore the factors that improve the content of health-promoting properties in tomatoes using agricultural big data obtained from cultivation sites, and to develop a predictive model for their contents, based on the clarification of the mechanism. As a result, the study was able to clarify the importance of light environment for the improvement of health-promoting properties (ascorbic acid, polyphenol, and antioxidant activity) of tomatoes using agricultural big data obtained from cultivation sites, and and prediction models for their contents could be constructed with high accuracy.

Free Research Field

植物環境工学

Academic Significance and Societal Importance of the Research Achievements

トマトは機能性成分が豊富な野菜の一つであるが,その含量を予測する技術は未開発である.トマトの収量や生育の予測モデルは国内外の多くの研究グループが進めているが,機能性成分含量予測モデルを構築した研究成果は国内外を見渡しても無く,本研究が初めてである.これらのことから,本研究で得られた知見は,我が国のデータ駆動型スマート農業技術への貢献だけでなく,機能性成分における新たな研究の幕開けとなる大きなインパクトを持つ.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi