2020 Fiscal Year Final Research Report
Development of fully automated NMR data analysis assisted by AI
Project/Area Number |
18K06152
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 43040:Biophysics-related
|
Research Institution | Institute of Physical and Chemical Research (2019-2020) Osaka University (2018) |
Principal Investigator |
Kobayashi Naohiro 国立研究開発法人理化学研究所, 放射光科学研究センター, 上級研究員 (80272160)
|
Co-Investigator(Kenkyū-buntansha) |
児嶋 長次郎 大阪大学, 蛋白質研究所, 特任研究員 (50333563)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | NMR / 自動解析 / 人工知能 |
Outline of Final Research Achievements |
Compared to other methods such as X-ray crystallography and cryo-electron microscopy, the NMR method relies heavily on experience and manual analysis. We have succeeded in the world's first attempt to incorporate AI technology for further advancement, and has released a system that enables highly quick and accurate analysis even by beginners of NMR study. We published our result to a inter national journal as the first analysis tool equipped with a function that can perform noise removal with high accuracy using AI. In addition, by using a non-linear sampling method of multidimensional NMR spectra, the measurement time was reduced to 25%, and a total of 18 new NMR structure were determined by automated analysis, 12 of which took only a few days from measurement to completion of structural analysis and data verification, and two of which were fully automated. We are planning to publish all these strategy and automated system.
|
Free Research Field |
NMR分光学
|
Academic Significance and Societal Importance of the Research Achievements |
令和2年度までの成果として人工知能により高度化、高速化された解析システムが完成し、公開論文化された。公共データベースであるPDBへの述べ新規登録件数は18件以上にのぼり、そのうち13件は小型のタンパク質ながら新規フォールドであり測定、信号帰属解析、検証、登録には通常半年から1年を要することはごく普通である。今回の開発研究により大規模な測定期間短縮、解析やデータ検証の自動化が高度化されシステムとして統合され、その性能は世界最高レベルに達したと言っても過言ではない。この創薬研究などへの社会的インパクトは極めて大きいと考え、令和3年度内での国際学会発表、国際誌への投稿準備中である。
|