2021 Fiscal Year Final Research Report
Exploration of the cancer screening method analyzing the exhaled breath through the membrane-type surface stress sensor (MSS)
Project/Area Number |
18K07318
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 50020:Tumor diagnostics and therapeutics-related
|
Research Institution | University of Tsukuba |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
大越 靖 筑波大学, 医学医療系, 准教授 (10400673)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 人工嗅覚センサー / 膜型表面応力センサ / 呼気 / がん / 機械学習 / ガスクロマトグラフ質量分析計 / がん検診 |
Outline of Final Research Achievements |
We attempted to establish the cancer screening method by measuring the exhaled breath using an artificial odor senser, MSS. Reliability of the analytical method was confirmed by both repetitive measurement of the samples obtained from a same individual and analysis of the alcohol-containing samples. We then asked whether MSS can discriminate between cancer and healthy breath. Measurement of samples obtained from 100 cancer patients and 70 healthy individuals and analysis through machine learning theory revealed diagnostic accuracy of around 80%. To improve the accuracy, exhaled breath samples obtained from 60 cancer and 40 non-cancer patients were analyzed by a gas chromatograph mass spectrometer equipped with a concentrator. Based on the information of several components whose concentration is significantly different between cancer and non-cancer samples, sensitive membranes equipped in the MSS will be optimized in view of its future application for cancer screening.
|
Free Research Field |
臨床腫瘍学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究によって、人工嗅覚センサ(膜型表面応力センサ:MSS)を用いた呼気測定が将来のがんスクリーニング法の選択肢になり得ることが示された。呼気測定によって複数のがん種が同時にスクリーニングできるようになれば、簡便かつ安価ながん検診が可能になることより、高齢化が進みがん発生数が増加しつつある我が国において、きわめて有望ながんスクリーニング手法になることが期待できる。実用化に向けては診断精度の向上が必要であるが、ガスクロマトグラフ質量分析計を用いた解析でがん呼気で有意に濃度の異なる物質が特定されつつあるので、今後MSSに内蔵する感応膜組成を最適化することによって達成可能であると考えている。
|