• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Analysis for volume doubling time mechanism of lung nodules by using artificial intelligence technique

Research Project

  • PDF
Project/Area Number 18K07693
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionSt. Luke's International University

Principal Investigator

MATSUSAKO Masaki  聖路加国際大学, 聖路加国際病院, 医長 (90209528)

Co-Investigator(Kenkyū-buntansha) 原 武史  岐阜大学, 工学部, 教授 (10283285)
Project Period (FY) 2018-04-01 – 2023-03-31
Keywords肺癌 / 深層学習
Outline of Final Research Achievements

The purpose of this study was to predict the growth of nodules suspected of being lung cancer and to determine whether they would be benign or malignant based on the image features of nodule obtained from chest CT images. Volume Doubling Time (VDT) is often used as a measure of nodule growth rate. Therefore, we aimed to extract image features related to VDT using deep learning. In order to determine whether a nodule was benign or malignant from the image features, we analyzed the features using AutoEncoder, a convolutional neural network, to identify the possibility of differentiating between benign and malignant nodules.

Free Research Field

放射線医学

Academic Significance and Societal Importance of the Research Achievements

肺がんの早期発見は,結節状陰影の検出とその悪性度の予測が重要である.これは医師の高度な経験に基づいて行われる操作であるが,その定量解析を医師の見地から実現し,深層学習を用いて不偏的な画像特徴量を抽出する方法を明らかにした内容である.データベースの拡充が世界的な課題である中,本研究者のみが構築できた世界で唯一といえるデータベースを新たに構築し,定量画像解析が結節状陰影の鑑別に有益であると結論づけた有意義な内容である.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi