• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of central monitoring method to improve clinical trial efficiency

Research Project

  • PDF
Project/Area Number 18K10021
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 58010:Medical management and medical sociology-related
Research InstitutionNational Institute of Public Health (2018-2019, 2021-2022)
Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (2020)

Principal Investigator

Ueno Satoshi  国立保健医療科学院, その他部局等, 上席主任研究官 (20595706)

Co-Investigator(Kenkyū-buntansha) 岡田 昌史  東京大学, 医学部附属病院, 特任講師 (70375492)
土井 麻理子  国立保健医療科学院, その他部局等, 主任研究官 (70636860)
池原 由美  琉球大学, 病院, 特命助教 (70773456)
五所 正彦  筑波大学, 医学医療系, 教授 (70701019)
水島 洋  国立保健医療科学院, その他部局等, 主任研究官 (50219630)
Project Period (FY) 2018-04-01 – 2023-03-31
Keywordsデータ信頼性評価 / 臨床研究 / 国際標準 / CDISC標準 / 情報技術
Outline of Final Research Achievements

We developed an effective DM methodology to achieve a hybrid type of on-site and central monitoring, with data management managers (CDMs) intervening in the monitoring operations. The reliability of the data to be checked by central monitoring was confirmed, but the conditions and environment of the measurements were critical. More important than confirming the collected data was the process of setting up a research plan and collection items, and collecting data using a unified measurement method and the same interpretation. Setting up collection items and collection data using data standards and collecting data using established measurement methods would make monitoring and DM more efficient and contribute to improving the reliability of clinical research.

Free Research Field

研究データ管理

Academic Significance and Societal Importance of the Research Achievements

中央モニタリングに関する手法を開発されることにより、「簡便」かつ「効率的」にICH-GCPを準拠した臨床試験の実績を増やし、日本の臨床試験の信頼性を国際基準に引き上げることが可能となると考えられる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi