2021 Fiscal Year Final Research Report
A Study on Detecting and Improving Bad Smells in Requirements Elicitation
Project/Area Number |
18K11237
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60050:Software-related
|
Research Institution | Nanzan University (2021) Tokyo Institute of Technology (2018-2020) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 要求工学 / ゴール指向要求分析法 / ユースケースモデル / 詳細化 / 不吉なにおい |
Outline of Final Research Achievements |
In this research project, we develop techniques to detect automatically "bad smells", symptoms of missing requirements and poor refinement of requirements, included in the artifacts produced in requirements elicitation processes. Firstly, we collect and analyze instances of bad smells in real requirements elicitation processes, and based on their characteristics we categorize them. To automate detecting bad smells, we develop metrics to quantify structural characteristics and semantical ones of bad smells. A supporting tool is developed to detect and to classify the instances of bad smells using the developed metrics, and their improvement can be suggested based on their classification result. We pick up two elicitation methods, goal-oriented analysis and use case modeling.
|
Free Research Field |
ソフトウェア工学
|
Academic Significance and Societal Importance of the Research Achievements |
低品質な要求仕様書は,開発の後段までその影響が及び,最終成果物が顧客の真の要求を満たさないものになってしまうばかりか,最悪,開発をやり直す事態になりかねない.要求仕様書の構造的な特徴より,低品質箇所を検出するための手法は,これまで個別に提案されてきたが,仕様書を作り出す前の作業である要求獲得作業の中の本質的な作業である段階的詳細化過程で後工程に悪影響を及ぼすと思われる「不吉なにおい」を定義し,その検出・改善手法まで開発した研究はなく,本研究はその点が独創的である.また,本手法は低品質な仕様書が生み出される前の段階での検出・改善であり,その後段への効果も大きい.
|