• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Research on Effective Project Data Utilization for Software Effort Estimation Models

Research Project

  • PDF
Project/Area Number 18K11246
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60050:Software-related
Research InstitutionOkayama Prefectural University

Principal Investigator

Amasaki Sousuke  岡山県立大学, 情報工学部, 准教授 (00434978)

Co-Investigator(Kenkyū-buntansha) 阿萬 裕久  愛媛大学, 総合情報メディアセンター, 特任教授 (50333513)
横川 智教  岡山県立大学, 情報工学部, 准教授 (50382362)
Project Period (FY) 2018-04-01 – 2022-03-31
Keywords工数見積り / 転移学習 / 不具合モジュール予測
Outline of Final Research Achievements

This project revealed that training data for quality effort estimation can be organized even with far past project data. Also, it was found that cross-project defect prediction approaches were effective for cross-version defect prediction. An empirical experiment shows a useful effort estimation strategy where training data have different characteristics from a target organization.

Free Research Field

ソフトウェア工学

Academic Significance and Societal Importance of the Research Achievements

開発プロジェクトが少なくデータがすぐ古びてしまう組織でも過去プロジェクトデータを利用して一定の精度で工数を見積もることが可能という実務における新たな知見となる。また、新しいアプリケーション分野に参入した時に他組織のデータで工数見積りを必要とする開発組織にとって有用な知見をもたらした。不具合モジュール予測についての知見は、継続的にソフトウェアを開発する組織における不具合発見の効率化に役立つ。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi