2022 Fiscal Year Research-status Report
不均一性を前提とした海中浮遊物の利用による環境負荷の低い三次元水流計測システム
Project/Area Number |
18K11357
|
Research Institution | Kumamoto University |
Principal Investigator |
戸田 真志 熊本大学, 総合情報統括センター, 教授 (40336417)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Keywords | 水流計測 / 複数物体追跡 / 深層学習 / Soft-NMS |
Outline of Annual Research Achievements |
環境保全や水産業支援において、海中生物の生態を解明する上で、環境情報、特に水流情報が重要な意味を持つ。しかし、空間的に高密度且つ長時間の水流計測は極めて困難である。本研究では、水中に常時存在し、水流追従性の高い、藻類等の海中微小体(海中浮遊物)を利活用することで、「観測対象への影響が軽微で」「環境に優しく」「空間的に密で」「継続的に計測が可能な」水流情報を計測するシステムを開発する。具体的には、カメラにて海中の浮遊物を追跡し、その移動ベクトルから局所的な水流情報を推定するシステムの開発を行う。 本研究では、水流情報を得るためにその情報を直接的に反映している海中微小体について、魚類等と海中微小体の速度差を利用し、カルマンフィルタを利用して追跡しているが、一方で、近年は深層学習技術を利用することで、複数の対象物体の追跡を試みる事例も散見される。そこで、当初計画を一部変更し、深層学習技術を利用した複数対象物体(Multi-object Tracking)の環境を整備し、試行してみた。水流推定では、海中微小体が相互に遮蔽するオクルージョンの発生が想定されるため、Soft-NMS(Non-Maximum Suppression)技術を組み込むことで、オクルージョンに頑健な複数物体追跡環境を実現した。実際の海中環境での微小体への適用は今後確認作業を進める予定である。 なお、本年度は、実際の海域や水槽等から取得した水中映像を用いた検証実験を予定していたが、令和2年度、令和3年度に引き続き、新型コロナウィルス感染症の全国的な拡大の影響等を理由として、実海域での実験等が十分には行うことができなかった。これらは次年度に実施する予定である。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
新型コロナウィルス感染症拡大に伴い、令和2年度、令和3年度と同様に、現場での実験を十分には行うことができなかった。既有の映像等を利用し、アルゴリズムの検証、改良に取り組んではいるものの、コロナ禍の現況を踏まえ、研究期間を1年間延長することとした。
|
Strategy for Future Research Activity |
新型コロナウィルス感染症拡大等の影響にて、本年度実施できなかった現場での検証実験を令和5年度に実施することで、研究計画に従った研究を着実に遂行する予定である。
|
Causes of Carryover |
令和4年度も新型コロナウィルス感染症拡大等の影響で、現場での実映像取得と検証実験は十分には実施できず、それに係る旅費や実験機材に関する執行が予定よりは少なく、研究費に残額が生じた。次年度は、上述した現場実験に係る経費として執行する予定である。
|