• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Quantitative experimental analysis for the development of intracortical current field stimulation using a high-count multi-channel stimulator

Research Project

  • PDF
Project/Area Number 18K12059
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90110:Biomedical engineering-related
Research InstitutionMie University (2020-2021)
Osaka University (2018-2019)

Principal Investigator

Hayashida Yuki  三重大学, 工学研究科, 教授 (10381005)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywords医用生体工学 / 神経工学 / 神経補綴 / 人工視覚 / 脳皮質内刺激 / 神経インタフェース / 電子デバイスシステム / 神経生理学実験
Outline of Final Research Achievements

In order to establish neural prostheses for patients suffering from intractable neural dysfunctions, methods and techniques for precisely driving/controlling the spatiotemporal neural activity in the target neural tissue such as the cerebral cortex are required. In the present study, 1) we developed a hardware system that controls our previously developed multi-channel neural stimulator,and also a GUI software that supports the designing of the spatiotemporal patterns of stimuli generated by this system, 2) through the experiments with the voltage-sensitive dye fast imaging at millisecond temporal resolution in the cerebral tissue slices, we obtained new findings on spatiotemporal properties and physiological mechanisms of the neural activity induced by stimulation with the intra-cortical single microelectrode,and also on independence and nonlinear additivity of the neural responses to stimulation with multiple microelectrodes.

Free Research Field

医用生体工学

Academic Significance and Societal Importance of the Research Achievements

本研究で開発した神経組織内刺激システムは、先行開発した刺激デバイスの追加接続によって最大4096チャネルの微小電極を介して、高精度の時空間パターン電流刺激を生成可能とし、特に①チャネル数変更の高い自由度、②刺激パターンの一括設計・管理、③刺激による神経駆動実証済み等の点において他に類が無く、次世代型神経補綴の実現に向けた臨床前研究において極めて有用なツールとなる。また本研究で見出した刺激印加後の数~数十ミリ秒以内に生じる刺激誘発性神経活動に関する新知見は、それが高時間分解能のイメージングデータから得られたことより、その確証性は非常に高く、また組織内での微小電極配置の定量設計等に不可欠となる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi