2020 Fiscal Year Final Research Report
Study for performance improvement of automated lesion detection system in medical images using weakly-labeled data
Project/Area Number |
18K12096
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 90130:Medical systems-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Nomura Yukihiro 東京大学, 医学部附属病院, 特任講師 (60436491)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | 医用画像 / 診断支援システム / ディープラーニング / セグメンテーション / 異常検知 |
Outline of Final Research Achievements |
In this research, we constructed a methodology for performance improvement of an automated lesion detection system using weakly-labeled data. We constructed two types of lesion shape label estimation methods using the location of a lesion center and the measured size. In addition, we prepared to implement the constructed lesion shape estimation method in the web-based image database (CIRCUS DB). We also constructed automated lesion detection systems based on anomaly detection trained using data where only the existence of lesions is known.
|
Free Research Field |
医用画像処理
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果として得られた、病変ラベル推定方法および病変の存在のみが既知な症例を用いた異常検知手法を用いることで、症例データ収集における医師の負担が軽減され、かつ臨床現場に多数ある弱ラベル付症例が利用可能となる。このため、病変自動検出システムの研究のさらなる推進が図れると考える。病変自動検出システムの研究が進めば多くの高性能なシステムが臨床現場で使用されるようになり、臨床画像診断の質的向上に寄与すると考える。
|