2022 Fiscal Year Research-status Report
Project/Area Number |
18K12812
|
Research Institution | University of Hyogo |
Principal Investigator |
落合 夏海 兵庫県立大学, 政策科学研究所, 講師 (80812552)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Keywords | 確率的ボラティリティ変動モデル |
Outline of Annual Research Achievements |
本研究は、日本の金融市場の高頻度データを使用して、日中リターンにおけるボラティリティ変動の特性を明らかにすることが目的である。取引日内のボラティリティ変動においては、日次リターン変動とは異なる日内周期性が存在することや、各国市場に特有の要因が影響することから、日本の金融市場の日中のボラティリティ変動要因を検証することは、日中のボラティリティの予測や市場の安定化において社会的な意義がある。 本年度は、確率的ボラティリティ変動(SV)モデルを用いて、日経225先物の日中取引と夜間取引の1時間毎のデータに対して、ベイズ的な手法にもとづきMCMC法を適用してボラティリティ変動の日内周期性を検証した。推定の結果、日本市場の日中と夜間それぞれの取引開始時刻と終了時刻付近においてボラティリティが高くなり、その間のボラティリティは低い傾向があること、また、主要な海外市場の取引開始時刻付近においてもボラティリティが高くなる傾向があることが確認された。これは海外市場に対して行われた先行研究において、取引日内のボラティリティ変動がU字型の日内周期性をもつことや、海外市場の取引開始時刻の影響を受けるという結果と整合的であり、日本市場においてもその傾向を確認することができた。 より細かな時間刻みのデータに対してモデル推定を行うためにモデルの改良を行うことと、出来高とボラティリティとの関連性について分析を進めた。これらの点に関して、来年度も引き続き研究を続けていく。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
モデル推定の計算において妥当な結果を得るために、当初の予定よりも時間が掛かったため。
|
Strategy for Future Research Activity |
より細かな時間刻みのデータに対してモデル推定を行うためモデルの改良を行うこと、また、出来高とボラティリティとの関連性についての分析を引き続き行う。
|
Causes of Carryover |
新型コロナウイルス感染症拡大のため、学会や研究集会がオンライン開催となり、旅費への支出がなくなったため。今後の状況を見ながら、より高性能なパソコンの購入等への支出を検討する。
|