• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Research-status Report

非可換射影超曲面の研究

Research Project

Project/Area Number 18K13381
Research InstitutionHirosaki University

Principal Investigator

上山 健太  弘前大学, 教育学部, 講師 (30746409)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywords非可換超曲面 / Knorrer周期性 / Cohen-Macaulay加群の安定圏 / 点スキーム / 非可換代数幾何学
Outline of Annual Research Achievements

本研究課題は非可換超曲面の研究が目的であり,今年度は次の2つの研究成果を得た.
(1) 静岡大学の毛利出氏との共同研究で,非可換次数付きKnorrer周期性の研究を行った.Knorrer周期性は可換超曲面上の極大Cohen-Macaulay加群の安定圏に現れる周期性で,可換環論において非常に重要な役割を担っている.この研究では,まず次数付きKnorrer周期性定理の非可換への自然な一般化を与えた.Knorrer周期性は強力な定理であり,非可換では(可換に近いような)それなりの仮定が必要になる.そのため,上記の結果が適用できない(非可換特有の現象が起きる可能性のある)非可換次数付き超曲面も存在する.そのような非可換次数付き超曲面上の極大Cohen-Macaulay加群の安定圏の構造を調べるため,2次超曲面に的を絞って様々な計算方法を与えた.
(2) 大阪大学の東谷章弘氏との共同研究では,(1)で得られた安定圏の計算方法を進展させ,「(±1)歪」した(A_1)型2次超曲面上の極大Cohen-Macaulay加群の安定圏は組み合わせ的な操作で計算できることを証明した.具体的には,(±1)歪した(A_1)型2次超曲面から単純グラフを構成し,そのグラフに対して,4種類のグラフ操作を繰り返し行ってグラフを変化させていった結果で安定圏が計算できるということを示した.その系として,この安定圏は可換のとき(つまり(A_1)型超曲面のとき)と同様に半単純環の導来圏と三角圏同値になるが,現れる半単純環の種類が可換のときより増えるということが分かった.また,Stanley-Reisnerイデアルの性質を用いることで,安定圏と点スキームの関係性も明らかにした.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

非可換超曲面上の極大Cohen-Macaulay加群の安定圏の理解は本研究課題の大きな目標の一つである.Knorrer周期性定理は安定圏の計算において非常に有用的な定理であり,非可換でも重要な役割を担うと考えられる.全貌解明に向けて着実に進展している.

Strategy for Future Research Activity

これまでに得られた結果の応用や発展を模索する.同時に,極大Cohen-Macaulay加群の安定圏だけでなく様々な角度から非可換超曲面の非可換代数幾何的性質や表現論的性質を考察する.

Causes of Carryover

新型コロナウイルス感染症(COVID-19)の影響により,予定していた研究集会参加や研究打ち合わせが中止もしくは延期となったため,次年度に繰り越した.事態が落ち着いた頃に代替的に行われるであろう研究集会や研究打ち合わせの旅費として使用する予定である.

  • Research Products

    (7 results)

All 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Journal Article] On Knorrer periodicity for quadric hypersurfaces in skew projective spaces2019

    • Author(s)
      Kenta Ueyama
    • Journal Title

      Canadian Mathematical Bulletin

      Volume: 62 Pages: 896-911

    • DOI

      10.4153/S0008439518000607

    • Peer Reviewed
  • [Presentation] 非可換Knorrer 周期性について2019

    • Author(s)
      上山健太
    • Organizer
      第43回神楽坂代数セミナー
    • Invited
  • [Presentation] Knorrer's periodicity for skew quadric hypersurfaces2019

    • Author(s)
      Kenta Ueyama
    • Organizer
      The Eighth China-Japan-Korea International Symposium on Ring Theory
    • Int'l Joint Research
  • [Presentation] Noncommutative graded Knorrer's periodicity theorem2019

    • Author(s)
      毛利出,上山健太
    • Organizer
      日本数学会2019年度秋季総合分科会
  • [Presentation] Down-up algebraのBeilinson algebraのホッホシルトコホモロジーについて2019

    • Author(s)
      板場綾子,上山健太
    • Organizer
      日本数学会2019年度秋季総合分科会
  • [Presentation] Stable categories of graded Cohen-Macaulay modules over skew quadric hypersurfaces2019

    • Author(s)
      Kenta Ueyama
    • Organizer
      2019 Noncommutative Algebraic Geometry Shanghai Workshop
    • Int'l Joint Research / Invited
  • [Presentation] Combinatorial study of stable categories of graded CM modules over skew quadrics2019

    • Author(s)
      Kenta Ueyama
    • Organizer
      名古屋大学環論表現論セミナー
    • Invited

URL: 

Published: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi