2023 Fiscal Year Final Research Report
Mathematical analysis of problems rerated to the incompressible viscous fluid under the domain perturbation
Project/Area Number |
18K13439
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 12020:Mathematical analysis-related
|
Research Institution | Yokohama National University |
Principal Investigator |
Ushikoshi Erika 横浜国立大学, 大学院環境情報研究院, 准教授 (20714041)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Keywords | 領域摂動 / ストークス方程式 |
Outline of Final Research Achievements |
In this study, we consider the domain perturbation problem for the Stokes equations, which are known as the fundamental equations of fluid mechanics by the mathematical analysis. In particular, we analyze how the Green functions and eigenvalues changes under the domain perturbation. Hadamard variational formula plays an important role to investigate the relation between eigenvalues and the topological type of the domain. In this topic, we analyze the relation between “domain shape” and “flow (velocity vector of fluid)” by using this formula.
|
Free Research Field |
偏微分方程式論
|
Academic Significance and Societal Importance of the Research Achievements |
流体力学における領域摂動問題は,理論的側面だけではなく応用についても非常に重要な問題と言える.本研究では,アダマール変分公式導出の見地から数理解析的手法により同問題や関連する領域摂動問題のスペクトル解析について取り組むことを目指している.そして実際に,本研究を通してストークス方程式のアダマール変分公式に対する基礎理論の考察や,均質等方弾性体の固有振動の新規課題について研究成果を上げることに成功している.
|