2023 Fiscal Year Final Research Report
Reserach on dynamical systems and fluid mechanics in terms of applied analysis
Project/Area Number |
18K13443
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 12020:Mathematical analysis-related
|
Research Institution | Keio University |
Principal Investigator |
Soga Kohei 慶應義塾大学, 理工学部(矢上), 准教授 (80620559)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Keywords | Hamilton力学系 / Lagrange力学系 / Tonelliの変分法 / 弱KAM理論 / Hamilton-Jacobi方程式 / 流体力学 / Navier-Stokes方程式 / 数値解析 |
Outline of Final Research Achievements |
In this research, based on applied analysis, we proposed a new approximation method for weak KAM theory (weak KAM theory is to analyze regular motion of Lagrangin dynamics and Hamiltonian dynamics in terms of nonlinear partial differential equations), demonstrated an elementary proof in Tonelli's calculus of variations, proved existence of weak solutions to systems of fundamental equations in fluid mechanics, analyzed convergence and error estimates for numerical methods for systems of fundamental equations in fluid mechanics, and showed wellposedness of a nonlinear partial differential equations arising in computational fluid mechanics.
|
Free Research Field |
解析学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、「構成的手法を尊重すること」、「厳密な数学解析として数値解析的手法を構築/援用すること」、「解の存在を事前に仮定する必要のない数値解析的理論を展開すること」に力点をおき、古典力学および流体力学に関する諸問題を分野横断的な手法で解明した.「純粋数学が求める厳密さを保ちつつ、極めて初等的な手法を用いて複雑な非線型問題を解析する枠組みを与えた」という意味で、本研究の成果は高い独創性を持ちかつ分野横断的な応用の可能性を有するものである。
|