• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

New developments in iterated forcing

Research Project

Project/Area Number 18K13448
Research InstitutionShizuoka University

Principal Investigator

メヒア ディエゴ  静岡大学, 理学部, 准教授 (70777961)

Project Period (FY) 2018-04-01 – 2023-03-31
KeywordsForcing Theory / Forcing Iterations / Creature forcing / 自然数上のイデアル / Strong Measure Zero / Real line
Outline of Annual Research Achievements

The main goal of the project consists in developing the following forcing iteration techniques and find applications to solve open problems about combinatorics of the real line: (i) Multidimensional iterations with ultrafilter limits; (ii) Multidimensional template iterations; and (iii)
Weak creature forcing.
The year 2022 continues the main plan of 2021 to conclude part (iii). In collaboration with researchers in Vienna, we obtained great advances towards (iii) in 雑誌論文1, namely, we considerably simplified very complex creature forcing constructions, using probabilistic methods, while including "parametrized sublevels" in the forcing construction. This simplification not only allowed us to solve problems about the combinatorics of the real line (in connection with 雑誌論文3), but made creature forcing accessible for other fields. This can be used to develop weak creature forcing constructions to solve problems in Bounded Arithmetic.
Furthermore, we made new contributions to the understanding of the real line: we generalized the notion of Lebesgue measure to the context of reals modulo ideals on the natural numbers (雑誌論文2、学会発表3), and found new discoveries about the combinatorics of strong measure zero sets (学会発表1,2,4).

  • Research Products

    (10 results)

All 2023 2022 Other

All Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results) Remarks (3 results)

  • [Journal Article] Localization and anti-localization cardinals2023

    • Author(s)
      Miguel Cardona and Diego A. Mejia
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: - Pages: -

    • Open Access
  • [Journal Article] Continuum Many Different Things: Localisation, Anti-Localisation and Yorioka Ideals2022

    • Author(s)
      Miguel Cardona, Lukas Klausner, Diego A. Mejia
    • Journal Title

      Preprint

      Volume: - Pages: -

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Lebesgue measure zero modulo ideals on the natural numbers2022

    • Author(s)
      Viera Gavalova, Diego A. Mejia
    • Journal Title

      Preprint

      Volume: - Pages: -

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Cardinal Characteristics Associated with the Ideal of Strong Measure Zero Sets2022

    • Author(s)
      Diego A. Mejia
    • Organizer
      ESI Set Theory Workshop
    • Int'l Joint Research / Invited
  • [Presentation] 強測度ゼロ集合のイデアルに関連する基数不変量2022

    • Author(s)
      Diego A. Mejia
    • Organizer
      日本数学会2022年度秋季総合分科会
  • [Presentation] Measure zero modulo ideals2022

    • Author(s)
      Diego A. Mejia
    • Organizer
      京都大学RIMS研究集会2022強制法と基数算術の新たな展開
    • Int'l Joint Research
  • [Presentation] Cofinality of the ideal of strong measure zero sets2022

    • Author(s)
      Diego A. Mejia
    • Organizer
      Colombia-Mexico seminar of Set Theory
    • Int'l Joint Research / Invited
  • [Remarks] Diego A. Mejia(静岡大学教員データベース)

    • URL

      https://tdb.shizuoka.ac.jp/RDB/public/Default2.aspx?id=11203&l=0

  • [Remarks] Diego A. Mejia (HP)

    • URL

      https://www.researchgate.net/profile/Diego_Mejia2

  • [Remarks] Diego A. Mejia (Researchmap)

    • URL

      https://researchmap.jp/mejia?lang=ja

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi