• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Study on the use of machine learning approaches for enabling to guarantee safety of model-based autonomous navigation

Research Project

  • PDF
Project/Area Number 18K13727
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 20020:Robotics and intelligent system-related
Research InstitutionNagoya University

Principal Investigator

Akai Naoki  名古屋大学, 工学研究科, 助教 (40786092)

Project Period (FY) 2018-04-01 – 2023-03-31
Keywords自己位置推定 / 機械学習 / 確率モデリング / 移動ロボット
Outline of Final Research Achievements

In this research, we have focused on localization for mobile robots. Localization is a fundamental function for autonomous navigation. Our main objective is to realize reliable localization. Machine learning algorithms were utilized to achieve things that model-based localization methods cannot perform, for example, detection of localization failures. In particular, we do not just use the machine learning algorithms and integrated them into a probabilistic model. This integration enables us to handle uncertainty of the learning methods.
We have published a book that summarizes the proposed methods at 2022. Therefore, we consider that we could contribute to improve localization technologies through this research.

Free Research Field

ロボティクス

Academic Significance and Societal Importance of the Research Achievements

本研究の成果をまとめた書籍を、2022年に発刊している。この書籍では、教科書のような基礎を確実に伝えることを前提とせず、どのような考えで新しい技術を作り、それをどのように実装するかという解説に主眼を置いた。そのため、長い時間を見て、有用なものであり続けるとは考えていない。しかし、これから実現される新たな技術を作るために活用されるものと考えている。つまり本研究の成果は、これからの科学技術を向上させるための一助になるものと考えている。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi