• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Development of practical anomaly detection based on robust sparse modeling

Research Project

  • PDF
Project/Area Number 18K13953
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 25010:Social systems engineering-related
Research InstitutionToyo University (2019-2021)
Waseda University (2018)

Principal Investigator

Ohkubo Masato  東洋大学, 経営学部, 講師 (40777976)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywords異常検出 / ロバスト統計 / スパース・モデリング / タグチメソッド / MTシステム
Outline of Final Research Achievements

We consider the problems accompanied with the anomaly detection for sensor data. Since sensor data is automatically acquired and accumulated in real time, there is a possibility that a large amount of anomaly data is mixed in the learning data. Such a learning data can bring significant reduction of the performance of anomaly detection, even if the conventional statistical modeling method is applied. Therefore, we conduct theoretical research so that we apply robust and sparse modeling that can estimate statistical models without being affected by mixed anomaly data to our statistical anomaly detection procedures.

Free Research Field

複合領域

Academic Significance and Societal Importance of the Research Achievements

統計的異常検出法は製造業における設備機器の状態監視保全の中核をなす技術であるだけでなく,様々な製品・サービスに応用され,安心・安全な社会システムの構築に重要な役割を担っている.本研究の成果である統計的異常検出法は,特にセンサーから自動で取得・蓄積されたデータを対象とした場合の異常検出性能を飛躍的に向上させるとともに,その原因の特定に有益な情報を同時に提供するものである.この研究成果により,統計的異常検出法の応用可能性が広がり,設備機器の故障予測や重篤な事故の未然防止等の様々な社会問題の解決につながることが期待される.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi