• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Annual Research Report

Creation of an organic thin film deposition system by integration of information science

Research Project

Project/Area Number 18K14126
Research InstitutionKyoto University

Principal Investigator

Packwood Daniel  京都大学, 高等研究院, 講師 (40640884)

Project Period (FY) 2018-04-01 – 2020-03-31
Keywords有機薄膜 / 低速電子線解析 / 走査トンネル顕微鏡 / 電子線回析シミュレーション / ベイズ最適化 / 教師なし機械学習 / 薄膜構造の解明
Outline of Annual Research Achievements

Organic thin films on metallic substrates are widely used as charge transport layers in OLEDs (organic light emitting diodes) and other organic electronics.

In this project, we aimed to create a machine learning algorithm which can find the optimal deposition conditions for creating highly crystalline, small-molecule organic thin films. We succeeded to collect training data for this algorithm, and confirmed that it spans a wide range of thin film states (sub-monolayer to multilayer) using scanning tunneling microscopy. However, more training data is needed to run the optimization algorithm properly.

In addition, we created a new computational method which can, in principle, determine the atomic structure of an organic thin film from low-energy electron diffraction (LEED) data.

  • Research Products

    (7 results)

All 2020 Other

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results) Remarks (2 results)

  • [Journal Article] Exploring the configuration spaces of surface materials using time-dependent diffraction patterns and unsupervised learning2020

    • Author(s)
      Daniel M. Packwood
    • Journal Title

      Scientific Reports

      Volume: 10 Pages: 5868 - 5879

    • DOI

      https://doi.org/10.1038/s41598-020-62782-6

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Structure prediction and control for functional surface materials2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      Applied Math for Energy: Future Directions (workshop at I2CNER, Kyushu University)
    • Invited
  • [Presentation] 表面上の分子集合体のための機械学習2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      近畿化学協会コンピューター化学部会 第107回例会
    • Invited
  • [Presentation] Informatics for self-assembled materials2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      First Max Planck-VISTEC Symposium on Materials Science
    • Int'l Joint Research / Invited
  • [Presentation] Machine learning for surface-assisted self-assembly2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      NANOMAT2019 (CNRS, France)
    • Int'l Joint Research / Invited
  • [Remarks] Scientific Reports website

    • URL

      https://www.nature.com/articles/s41598-020-62782-6

  • [Remarks] Research group website

    • URL

      http://www.packwood.icems.kyoto-u.ac.jp/

URL: 

Published: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi