• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Development of cytological diagnosis aiding platform

Research Project

  • PDF
Project/Area Number 18K15310
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 50020:Tumor diagnostics and therapeutics-related
Research InstitutionUniversity of Yamanashi

Principal Investigator

Kawai Masataka  山梨大学, 大学院総合研究部, 臨床助教 (00813239)

Project Period (FY) 2018-04-01 – 2021-03-31
Keywords細胞診 / 甲状腺癌 / 深層学習
Outline of Final Research Achievements

We collected cytological images and trained deep neural networks. Seven papillary thyroid carcinoma (PTC) and six non-PTC cases were collected from University of Yamanashi Hospital. Cytologic slides were scanned with virtual slide scanner (VS-120, Olympus). Deep neural models were implemented with Keras (TensorFlow backend). We trained VGG16, GoogLeNet, Xception, InceptionV3, ResNet50, and original model (2 convolution+batchnormalization followed by 2 layer multi-layer perceptron) as PTC or non-PTC classification task. Fine-tuned ResNet50 pretrained on ImageNet resulted in as high as 98% accuracy. We are investigating generative adversarial network (GAN) to transfer histological images knowledge to cytological diagnosis.

Free Research Field

腫瘍学

Academic Significance and Societal Importance of the Research Achievements

細胞診のスクリーニングや診断は人材の不足や検体の増加に伴い、自動化が望まれている。本研究により細胞診画像への深層学習応用が有用であることが示され、細胞診へのAI導入が有用であることが示唆された。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi