• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

AI-based optimization of replanning frequency and timing for head and neck adaptive radiation therapy

Research Project

  • PDF
Project/Area Number 18K15567
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKansai Medical University

Principal Investigator

TAKEGAWA Hideki  関西医科大学, 医学部, 助教 (60526870)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywords適応放射線治療 / 人工知能 / 機械学習 / 最適化 / 頭頸部癌 / 医学物理
Outline of Final Research Achievements

We developed and verified machine learning-based prediction models of patient deformation during radiotherapy for head and neck cancer.
Data from 120 patients with nasopharynx, oropharynx, hypopharynx, or laryngeal cancer were collected. Patient deformation during radiotherapy was calculated by calculating the displacement vector field between cone-beam CT images at the first and subsequent fractions. The calculated deformation and patient characteristics were used as input parameters to machine learning. Various machine learning algorithms were tested to predict patient deformation. The prediction accuracies of the developed models were verified by comparing the actual patient data.

Free Research Field

医学物理学

Academic Significance and Societal Importance of the Research Achievements

本研究で行った体形変化予測モデルの構築は、治療成績向上につながる患者個別化した適応放射線治療につながる。更に、適応によるメリットが少ない患者では、治療効果には影響を及ぼさない不要な適応を避けることも可能となる。適応放射線治療の臨床導入負荷を低減させることにつながり、同治療の普及に貢献する。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi