2020 Fiscal Year Final Research Report
Developments of diagnostic AI algorithms for renal tumor images
Project/Area Number |
18K15635
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 52040:Radiological sciences-related
|
Research Institution | Okayama University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | Deep learning / 腎腫瘍 / CT / 画像診断 |
Outline of Final Research Achievements |
This study evaluated the utility of a deep learning method with convolutional neural networks (CNNs) for determining whether a small solid renal mass was benign or malignant on multiphase contrast-enhanced CT. A deep learning method with CNNs allowed acceptable differentiation of small solid renal masses in dynamic CT images. However, a single deep learning model could not predict malignancy in all renal tumors of out study. By preparing and adjusting the appropriate images and patients for training, we might be able to create more promising models for various specialized tasks.
|
Free Research Field |
放射線医学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究によりDeep learningによる腎腫瘍の診断法の一定の有用性が示され、Deep leaning技術を用いることで、画像評価者の経験や違いなどに影響のない、より均一な精度の検査を多くの患者に提供できる可能性が示された。また、同様の手法を応用すれば、腎臓以外の多くの腫瘤の診断への適応が拡がる可能性も示唆される。さらにこの解析法の普及および産学官連携により、国内でのより精度を高めたDeep learningソフトウェアの開発や、国内のビッグデータを用いたクラウドデータベース構築など発展的研究につながることが期待される。
|