• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Accuracy evaluation of predicted disease state transition by Markov model and its application to cost-effectiveness analysis

Research Project

  • PDF
Project/Area Number 18K17381
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 58030:Hygiene and public health-related: excluding laboratory approach
Research InstitutionHiroshima University

Principal Investigator

Akita Tomoyuki  広島大学, 医系科学研究科(医), 講師 (80609925)

Project Period (FY) 2018-04-01 – 2021-03-31
Keywordsマルコフモデル / 推定精度 / 費用効果分析 / 漸近論
Outline of Final Research Achievements

Markov model is used to estimate the disease progression and cost-effectiveness analysis. This model predicts future pathological progression based on the "transition probability" calculated by data from epidemiological/clinical research data, but so far. few studies examined that the number of data from the original research has affected the prediction accuracy.
In this study, we have developed a formula to evaluate the prediction accuracy by Markov model in the "confidence interval". Next, a numerical simulation was performed to examine the number of data and the accuracy of the confidence interval (covering probability). It was also compared with the existing formula confidence intervals in a special case of the Markov model (two states irreversible). Furthermore, based on this formula, the estimation accuracy of cost and effect in concrete cost-effectiveness analysis was examined.

Free Research Field

数理疫学

Academic Significance and Societal Importance of the Research Achievements

検診・治療等の疾病対策導入を検討するとき、検診を導入した/導入しなかった場合の、生涯にかかる費用とQOLをそれぞれ見積り、導入に要した費用に似合うだけのQOL改善が見込まれるのかが評価されている。方法の一つであるマルコフモデルは、実際の疫学・臨床研究のデータから、1年間の疾患の発症率や進行率を出して、それをもとに仮想的に病態進行をシミュレーションを行う。元のデータの対象者数が少ない場合、予測の精度がよくないと考えられるが、これまでの研究では、ほとんど考慮されていない。そこで本研究では、予測の精度を「信頼区間」として表現するための公式を開発し、その方法の妥当性を理論と実用の両面から検討した。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi