• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Real Time Graph Query Processing on Massively Parallel Environment

Research Project

  • PDF
Project/Area Number 18K18057
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60080:Database-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Shiokawa Hiroaki  筑波大学, 計算科学研究センター, 准教授 (90775248)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywordsデータベース / グラフ / 問合せ処理 / ビッグデータ
Outline of Final Research Achievements

In this research project, we have developed graph parallel processing techniques that focus on the properties of real-world graph data, and have developed methods for accelerating various query processing problems for large-scale graphs. Specifically, we addressed (1) community search queries for large unweighted undirected graphs, (2) similarity search queries for heterogeneous graphs, (3) dense subgraph search queries for attributed graphs, and (4) range queries for complex networks, and we have developed a set of fast and scalable algorithms for distributed parallel environments. All of the results from (1) to (4) are 10 to 10,000 times faster than conventional methods while guaranteeing the same level of query processing quality.

Free Research Field

データベース

Academic Significance and Societal Importance of the Research Achievements

本研究が対象とした大規模グラフデータはタンパク質データや化学物質データなどを扱う医療・ライフサイエンス分野,ソーシャルネットワークやWebデータなどを扱うSNSアプリケーションなど,我々の日常生活に密接に関わるデータである.本研究が開発した高速・高精度・スケーラブルな問合せ処理アルゴリズムはこれらの利用場面において,研究や開発サイクルの加速やアプリケーションの利便性向上に大きく寄与する技術である.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi