• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

String Indexing Based on Space-Optimal Grammar Compression and Its Application to Knowledge Discovery from Stream Data

Research Project

  • PDF
Project/Area Number 18K18111
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionKyushu Institute of Technology

Principal Investigator

Takabatake Yoshimasa  九州工業大学, 大学院情報工学研究院, 特任助教 (20807010)

Project Period (FY) 2018-04-01 – 2021-03-31
Keywordsデータ圧縮 / 圧縮索引 / 圧縮情報処理 / 文法圧縮 / BWT
Outline of Final Research Achievements

Highly repetitive texts exceed TB and are still increasing. In this research, we developed grammar compressions and Online Run-Length BWTs (ORLBWTs), which can compress such large streaming data at high speed in compressed space. Furthermore, we developed various information processes on the compressed data. Although we could not develop a grammar-based compressed index supporting real-time keyword searches on large streaming data, we significantly improved the construction time of ORLBWTs and our ORLBWTs resulted in the development of an ORLBWT-based compressed index supporting real-time searches on large streaming data [Bannai et al. TCS2020].

Free Research Field

文字列のデータ圧縮とその圧縮データ上での情報検索

Academic Significance and Societal Importance of the Research Achievements

開発した文法圧縮やOnline Run-Length BWT (ORLBWT)をTB超のデータをさらに省メモリかつ高速に圧縮可能になった.また,開発したORLBWTを応用したリアルタイムキーワード検索可能な圧縮索引を用いることで巨大なストリームデータから効率的に情報抽出可能となった.また,開発した各種圧縮情報処理技術を応用することで巨大なストリームデータからのリアルタイムの知識発見が可能とすることが期待できる.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi