2022 Fiscal Year Research-status Report
複数疾病を伴う高齢入院患者の予後予測因子の同定:機械学習モデルの解釈性の向上
Project/Area Number |
18K18471
|
Research Institution | Yokohama City University |
Principal Investigator |
清水 沙友里 横浜市立大学, データサイエンス研究科, 講師 (60625408)
|
Co-Investigator(Kenkyū-buntansha) |
原 聡 大阪大学, 産業科学研究所, 准教授 (40780721)
伏見 清秀 東京医科歯科大学, 大学院医歯学総合研究科, 教授 (50270913)
|
Project Period (FY) |
2018-06-29 – 2024-03-31
|
Keywords | 機械学習 / 医療データベース / 解釈性の向上 / バリデーション |
Outline of Annual Research Achievements |
高齢者の身体的な脆弱性に関して、包括的な視点から評価を行い、予後悪化の要因を明らかにするということは重要な課題であるが、複数疾病のある患者に対して、それらの並存パターンの重症度評価は十分ではない。社会医学領域においては、予測力に劣る線形回帰モデルの利用から脱却できておらず、手法論的に挑戦可能な課題が数多く残っている。昨年度は、統計学的なモデルと機械学習モデルの比較を行い、機械学習モデルのフィットに課題のあることがわかった。そこで今年度研究においては、モデルの精度向上のため、その他の機械学習手法を応用し、予後予測因子のより精緻な同定を行うことを目的とした。
これまでの研究において、入院初日の診療行為データを用いて予測モデルを構築した。入院初日の診療行為は、患者に対する医療者の診療方針を示していると考えられる。一般的に、診療行為に関する情報は、非常に情報量のあるデータであるが、そのデータの次元の高さのために全てのデータを予測モデルに入れることが現実的ではなかった。そこで、次元削減等の手法を用いることで、これらのデータを利用可能にし、かつ予測モデル精度の向上が可能であることが示唆された。加えて、看護必要度等の患者重症度評価指標をモデルへ使用した。また、診療行為情報などのスパースなカテゴリカルデータを数値化する複数の手法を予測モデルに用いて解析を実施した。昨年度は、データソースを変更し、他の医療管理データを用いた場合での一般化可能性を確認した。 本年度は、予後予測因子としても用いている急性期医療い期間を退院した患者の再入院に関するデータ・バリデーション研究を実施しているところである。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
データソースの取得に時間を要したため。新データへの導入が遅延した。
|
Strategy for Future Research Activity |
再入院に関するバリデーション研究を進める予定である。
|
Causes of Carryover |
データ受領遅れにより分析が後ろ倒しになったため。
|
-
-
-
-
-
[Book] データで変える病院経営 第8章 ビッグデータを活用する2022
Author(s)
後藤, 隆久, 原, 広司, 田中, 利樹, 黒木, 淳, 今中, 雄一
Total Pages
286
Publisher
中央経済社,中央経済グループパブリッシング
ISBN
9784502419218