• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Designing a Platform when Preferences over Trading Partners are Unknown

Research Project

  • PDF
Project/Area Number 18K18573
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 7:Economics, business administration, and related fields
Research InstitutionOsaka University

Principal Investigator

Aoyagi Masaki  大阪大学, 社会経済研究所, 教授 (50314430)

Project Period (FY) 2018-06-29 – 2022-03-31
Keywordsメカニズムデザイン / ランダムグラフ / プラットフォーム
Outline of Final Research Achievements

This project formulates a model of many-to-many matching in a two-sided market. Agents on each side of the market are entrepreneurs endowed with heterogeneous skills, and the completion of their project requires a complementary skill possibly possessed by agents on the other side of the market. A complementary-skill network describes such a relationship between a skill and its complementary skills. A monopolistic platform solicits private skill information from the agents and then determines a match assignment which allows members of the same match to share their skills. Subscription is valuable to each agent if they are matched with any agent who possesses a complementary skill. When the platform offers differentiated subscription prices, we identify incentive compatible mechanisms that make it uniquely optimal for each agent to accept the platform's offer. We study the properties of such mechanisms in relation to the reciprocal property of the complementary skill network.

Free Research Field

ゲーム理論、メカニズムデザイン

Academic Significance and Societal Importance of the Research Achievements

利用者にスキルのシェアを促すプラットフォームは現実社会において重要な役割を果たしているが、このようなプラットフォームについての分析は数少ない。本研究ではスキルとその補完的スキルを補完スキルネットワークという概念を持って表し、各起業家のスキルが確率的に実現するときに、この補完スキルネットワークが起業家間の補完的なネットワークに変換されることを指摘した。またプラットフォームの利潤が補完スキルネットワークとどのような関係にあるかについて分析を行った。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi