2021 Fiscal Year Final Research Report
Realization of a new ultra-compact ion propulsion system using an electron source with the inverted potential structure at the electron emission surface compared with the conventional one
Project/Area Number |
18K18910
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 24:Aerospace engineering, marine and maritime engineering, and related fields
|
Research Institution | Yokohama National University |
Principal Investigator |
Takao Yoshinori 横浜国立大学, 大学院工学研究院, 准教授 (80552661)
|
Co-Investigator(Kenkyū-buntansha) |
村上 勝久 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (20403123)
|
Project Period (FY) |
2018-06-29 – 2022-03-31
|
Keywords | 電気推進 / 電子源 / グラフェン / イオン源 / 超小型衛星 |
Outline of Final Research Achievements |
Focusing on neutralizers or electron sources, which are the bottleneck in realizing a highly efficient ion propulsion system that can be installed in nanosatellites, we have attempted to use a propellant-free electron source using graphene, which has never been used in the past. The maximum emitted electron current of 6.0 mA was achieved at an applied voltage of 11 V in an electron source consisting of 380 elements with a single electron emission surface of 100 μm squared in a 3 mm square wafer. As a result, the current density was equivalent to that of a conventional small plasma neutralizer, while the electron generation cost was more than one order of magnitude lower than that of a conventional plasma neutralizer. On the other hand, in the ion source, the magnetic field arrangement and grid electrodes were optimized, and finally, a maximum beam current of 9.2 mA was obtained at a discharge power of 9.2 W.
|
Free Research Field |
航空宇宙工学
|
Academic Significance and Societal Importance of the Research Achievements |
超小型衛星に軌道遷移の自由度を与え、かつ、運用終了後のデブリ化を防止するためにも、高性能な超小型宇宙推進機が求められている。様々な推進機の候補があるが、既に宇宙での利用実績が豊富なイオン推進機はその候補の一つである。従来の超小型イオン推進機は既存の技術を小型化することでしか対応できていない中、これまでに無い新しい電子源として、低電圧駆動可能で高電流密度が得られるグラフェンを利用した推進剤不要な電子源の利用は、電子放出面の電位がプラズマ電位に近いという従来と異なる領域でのプラズマ生成の探索となり学術的意義のある研究である。
|