2020 Fiscal Year Final Research Report
Invention of the photoswitchable voltage-sensor
Project/Area Number |
18K19299
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 43:Biology at molecular to cellular levels, and related fields
|
Research Institution | Kagawa University |
Principal Investigator |
|
Project Period (FY) |
2018-06-29 – 2021-03-31
|
Keywords | イオンチャネル |
Outline of Final Research Achievements |
Our biological functions, including brain and heart functions, are generated by electrical signals. It is well known that these electrical signals are generated by voltage-gated channels. Attempts to manipulate the functions of the human body by manipulating the electrical signals of the body are currently being actively pursued. In this study, we attempted to create novel light-driven ion channels and light-driven membrane-functional proteins based on the structure and operation mechanism of the voltage sensor of the voltage-gated channel. Azobenzene, which undergoes photoisomerization at high speed, was used to move the voltage sensor helix of the ion channel to control the ion channel activity by light and to control functional molecules such as enzymes attached to the voltage sensor.
|
Free Research Field |
生理学
|
Academic Significance and Societal Importance of the Research Achievements |
共通ドメインである電位センサーをターゲットにすることで、種々の電位依存性チャネルに適用できるため、これまでの光駆動性ツールにはない、ネイティブチャネルの高いイオン選択性と膜局在・分子会合を保つ光駆動チャネルを次々に作成することが可能となる。これらにより、分子構造や動作機構に立脚して戦略的に光駆動チャネル・光駆動性膜蛋白を創製するプラットフォームを構築する。出来上がった光駆動分子は将来的に神経科学研究や細胞内小器官などの膜機能研究に柔軟かつ広汎に利用できる期待が持て、様々な光駆動性膜蛋白質をデザインする研究へ発展する可能性がある。
|