2021 Fiscal Year Final Research Report
Optimization of nanoparticles for development of ultra-broadband light sources
Project/Area Number |
18KK0159
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 36:Inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
グエン タンマイ 北海道大学, 工学研究院, 助教 (00730649)
徳永 智春 名古屋大学, 工学研究科, 助教 (90467332)
塚本 宏樹 北海道大学, 工学研究院, 学術研究員 (90629346)
|
Project Period (FY) |
2018-10-09 – 2022-03-31
|
Keywords | ナノ粒子 / レーザー / フェムト秒 / パルスレーザー / テラヘルツ |
Outline of Final Research Achievements |
Interaction of intense laser pulses with condensed matter, especially, nanoparticle stable aqueous dispersions, is expected to produce a variety of nonlinear optical effects. Among them, there have been independent experimental studies on high-energy pulsed X-ray (keV) generation through high-temperature plasmas for wavelength conversion and on low-energy terahertz wave (meV) generation based on higher-order nonlinear optical effects. In this study, femtosecond pulsed lasers have been irradiated to various nanoparticle aqueous dispersions and the energy generated from them have been detected. As a result, X-rays were efficiently extracted from Au nanoparticle aqueous dispersions, and THz-wave emission was also obtained from the Cu2O/Cu thin-layer interface. THz emission was also obtained from ZnTe nanoparticle aqueous dispersions, indicating that the interaction of intense laser pulses with condensed systems such as nanoparticles can produce an ultra-broadband light.
|
Free Research Field |
ナノ粒子科学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、フェムト秒という非常に短いパルスの近赤外領域のレーザーを、種々のナノ粒子分散液に照射し、そこから超広帯域発生するエネルギー線を検知した。金やZnTeナノ粒子、Cu2O/Cu界面を用いることで、プラズマ発生、高次の非線形効果によって、水よりも効率的にアップコンバージョン、ダウンコンバージョンがおこり、光子-光子変換が生じていると考えられる。これによって、超広帯域での光を取り出すデバイスの実現の可能性が生まれた。
|