2023 Fiscal Year Final Research Report
Research on the Solomon-Terao complexes by using D-module theory
Project/Area Number |
18KK0389
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
|
Allocation Type | Multi-year Fund |
Research Field |
Algebra
|
Research Institution | Rikkyo University (2023) Kyushu University (2018-2022) |
Principal Investigator |
ABE TAKURO 立教大学, 理学部, 教授 (50435971)
|
Project Period (FY) |
2019 – 2023
|
Keywords | 超平面配置 / 対数的ベクトル場 / 自由配置 / Solomon-寺尾理論 / Liouville複体 / 完全交差性 / Cohen-Macaulay性 / Ziegler予想 |
Outline of Final Research Achievements |
In this research, we studied the Solomon-Terao polynomial theory, which attracts many interests recently, from the viewpoint of the D-modules, in particular, that of so called the Liouville complex theory due to Uli Walther. On this approach, a joint work with Castro and Narvaez in Sevilla, we observed that the freenss of arrangements coincides with the Cohen-Macaulayness of the Liouville algebra, and a specializaion of the Liouville complex coincides with the Solomon-Terao complex. This shows that in a very high possibility, the Liouville complex theory could be regarded as a two-variable version of the Solomon-Terao complex theory. This enlarges the research of this area drastically. Also, in a joint work with Graham Denahm in Western university, we proved the Ziegler's conjecture on the logarithnmic differential forms. This was conjectured about 30 years before, and we investigated a theory to show it.
|
Free Research Field |
超平面配置、代数学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、直線の有限集合の一般化である超平面配置の代数を幾何・表現論の視点から解析・一般化することを目指した。まずSolomon-寺尾理論について説明する。超平面配置の代数は超平面に接するベクトル場、流れのようなものの集合である対数的ベクトル場の研究である。この対数的ベクトル場と組み合わせ論及び幾何と繋ぐものがSolomon-寺尾理論であった。これは代数的な定義を持っているが、これに対して近年Walther氏により導入されたD加群的視点を持つLiouville複体理論を融合することで、Solomon-寺尾理論に新たな視点を導入することが、本研究では達成された。
|