2021 Fiscal Year Final Research Report
The integrated multi-omics analysis of nontuberculous mycobacteria using neural network algorithms to construct a predictive model of the pathological features
Project/Area Number |
18KT0019
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
Complex Systems Disease Theory
|
Research Institution | Niigata University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
阿部 貴志 新潟大学, 自然科学系, 教授 (30390628)
|
Project Period (FY) |
2018-07-18 – 2022-03-31
|
Keywords | 非結核性抗酸菌 / サイトカイン / 機械学習 |
Outline of Final Research Achievements |
Nontuberculous mycobacteria (NTM) are widely distributed in the environment, and the environmental exposures cause chronic pulmonary infection due to NTM. A clinical problem for the NTM pulmonary disease is that classification of pathological states is uncertain. To address the issue, in this study, we analyzed the clinical courses of patients with NTM pulmonary disease together with the pathogenic mycobacteria, and have developed a mathematical model for predicting the type of pathological states on the basis of the pathogenic mycobacteria. This research accomplishment is anticipated to help us understand clinical classification and its characteristics of the NTM pulmonary disease.
|
Free Research Field |
医歯薬学
|
Academic Significance and Societal Importance of the Research Achievements |
浴室や土壌に広く生息している非結核性抗酸菌 (NTM)を吸入することによって、慢性呼吸器感染症であるNTM症を発症する。近年中高年女性を中心に、NTM症患者の増加が指摘されている。その病態は不明な点が多く、診療上の課題となっている。本研究では、NTM症の起因菌からその病態を予想できる数理モデルを開発した。本研究成果によって、NTM症の診療をより円滑に行えるようになることが期待される。
|