2020 Fiscal Year Final Research Report
Evaluating and enhancing the robustness of artificial systems based on complex network theory
Project/Area Number |
18KT0059
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
Intensification of Artifact Systems
|
Research Institution | Ibaraki University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
谷澤 俊弘 高知工業高等専門学校, ソーシャルデザイン工学科, 教授 (60311106)
水高 将吾 北陸先端科学技術大学院大学, 先端科学技術研究科, 助教 (70771062)
|
Project Period (FY) |
2018-07-18 – 2021-03-31
|
Keywords | 複雑ネットワーク / ネットワーク科学 / パーコレーション / モンテカルロシミュレーション |
Outline of Final Research Achievements |
We have studied the robustness of networks against failures and have obtained the following main results. (1) Percolation on a strongly-assortative network exhibits unusual phase transition. On the other hand, percolation on another strongly-assortative network exhibits an ordinary mean-field type transition. (2) A strongly-negative correlated structure changes critical properties on networks. (3) All hierarchical networks are highly vulnerable to random failure. (4) The giant connected component formed by the random failure process is always disassortative. (5) Near the critical point of Erdos-Renyi random networks, the long-range negative degree correlations emerges in the giant connected component.
|
Free Research Field |
複雑ネットワーク
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で展開した解析手法と得られた結果は複雑ネットワーク分野で初めて明らかとなったものや従来の予想を覆すものであり、この分野の今後の発展に貢献するものと考えられる。また、本研究を通じて、複雑ネットワークの解析から人工物システムの頑健性を正確に評価するために必要な知見をいくつか得ることができた。今後、応用を意識した定量的な研究を行うための基礎を与えたと考えられる。
|