2009 Fiscal Year Final Research Report
Geometrtic structures defined by differential forms (Topological Calibrations)
Project/Area Number |
19540079
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Osaka University |
Principal Investigator |
GOTO Ryushi Osaka University, 大学院・理学研究科, 准教授 (30252571)
|
Co-Investigator(Kenkyū-buntansha) |
FUJIKI Akira 大阪大学, 大学院・理学研究科, 教授 (80027383)
MABUCHI Toshiki 大阪大学, 大学院・理学研究科, 教授 (80116102)
NAMIKAWA Yoshinori 京都大学, 大学院・理学研究科, 教授 (80228080)
FUKAYA Kenji 京都大学, 大学院・理学研究科, 教授 (30165261)
YOSHIKAWA Kenichi 京都大学, 大学院・理学研究科, 教授 (20242810)
|
Project Period (FY) |
2007 – 2009
|
Keywords | カラビーヤオ多様体 / 変形理論 / 一般化された幾何構造 / 双エルミート構造 / 一般化されたケーラー構造 / ポアソン構造 |
Research Abstract |
We obtain the following two results: (1) Constructions of generalized Kaehler structures and unobstructed deformations We established the stability theorem of generalized Kahler structure and constructed many interesting examples. As an application, we showed that there exists a non-trivial bihermitian structure on compact Kahler surface with non-zero holomorphic Poisson structure. (2) Calabi-Yau structures on non-compact Kahler manifolds We showed that there is a Ricci-flat complete kahler metric on each Kahler class of a crepant resolution of normal isolated singularity which is the cone of an Einstein-Sasaki manifold.
|
Research Products
(15 results)