• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2010 Fiscal Year Final Research Report

Study of problems in calculus of variations, differential equations, and other areas involving minimizing movements

Research Project

  • PDF
Project/Area Number 19540212
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionShizuoka University

Principal Investigator

KIKUCHI Koji  Shizuoka University, 工学部, 教授 (50195202)

Co-Investigator(Kenkyū-buntansha) SHIMIZU Senjo  静岡大学, 理学部, 教授 (50273165)
HOSHIGA Akira  静岡大学, 工学部, 准教授 (60261400)
ADACHI Shinji  静岡大学, 工学部, 准教授 (40339685)
NAKAJIMA Toru  静岡大学, 工学部, 准教授 (50362182)
Project Period (FY) 2007 – 2010
Keywordsミニマイジング・ムーブメント / 変分問題 / 非線形偏微分方程式 / 発展方程式 / 幾何学的測度論
Research Abstract

Through this study we obtain that the limit of approximate solutions to the equation of vibrating string with an obstacle is really a solution to this equation. Besides we obtain several facts in the study of the equation of motion of a vibrating nonparametric membrane, in the study of a system of quasilinear hyperbolic equations, in the study of gradient Young measures for BV functions, in the study of the equation of motion of a vibrating membrane with a strong viscosity term.

  • Research Products

    (7 results)

All 2010 2009 2008 2007

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (5 results)

  • [Journal Article] Constructing a solution in time semidiscretization method to an equation of vibrating string with an obstacle2009

    • Author(s)
      Koji Kikuchi
    • Journal Title

      Nonlinear Analysis 71

      Pages: e1227-e1232

    • URL

      http://ir.lib.shizuoka.ac.jp/handle/10297/5035

    • Peer Reviewed
  • [Journal Article] Linear approximation for equations of motion of vibrating membrane with one parameter2008

    • Author(s)
      Koji Kikuchi
    • Journal Title

      J.Math.Soc.Japan 60

      Pages: 127-169

    • Peer Reviewed
  • [Presentation] 一次増大度の粘性項を持つ膜の振動方程式について2010

    • Author(s)
      菊地光嗣
    • Organizer
      夏の偏微分方程式セミナー2010
    • Place of Presentation
      神戸大学
    • Year and Date
      2010-08-25
  • [Presentation] An analysis of a system of quasilinear hyperbolic equations having quasiconvex and linear growth energy functional2008

    • Author(s)
      菊地光嗣
    • Organizer
      熊本における偏微分方程式研究集会
    • Place of Presentation
      熊本大学大学院自然科学研究科
    • Year and Date
      2008-10-25
  • [Presentation] An analysis of a system of quasilinear hyperbolic equations having quasiconvex and linear growth energy functional2008

    • Author(s)
      菊地光嗣
    • Organizer
      第9回広島応用解析セミナー
    • Place of Presentation
      広島大学工学部
    • Year and Date
      2008-09-04
  • [Presentation] Constructing a solution in time semidiscretization method to an equation of vibrating string with an obstacle2008

    • Author(s)
      菊地光嗣
    • Organizer
      WCNA2008
    • Place of Presentation
      米国フロリダ州
    • Year and Date
      2008-07-08
  • [Presentation] Constructing a solution in minimizing movement method to an equation of vibrating string with an obstacle2007

    • Author(s)
      菊地光嗣
    • Organizer
      Kumamoto Workshop on Nonlinear Evolution Equations 2007
    • Place of Presentation
      休暇村南阿蘇
    • Year and Date
      2007-08-10

URL: 

Published: 2012-01-26   Modified: 2014-06-02  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi