• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2009 Fiscal Year Annual Research Report

ある種のスペクトルを保存するBanach環上の作用素とその摂動の安定性

Research Project

Project/Area Number 19740063
Research InstitutionYamagata University

Principal Investigator

三浦 毅  Yamagata University, 大学院・理工学研究科, 准教授 (90333989)

Keywords関数解析学 / Banach環 / スペクトル保存写像 / 摂動と安定性
Research Abstract

スペクトルを保存する写像の構造について,次の結果を得た.まず関数環の間の二変数単項式のperipheralスペクトル保存写像の形を,その値域が十分な峰関数を含むときに決定した.特に二変数単項式の次数の最大公約数が1であれば,そのような写像はBanach環としての等距離同型写像,つまり荷重合成作用素に拡張されることも示した.さらに単位元の存在を仮定しなくとも,そのような関数環の間のperipheralスペクトル保存写像はBanach空間としての等距離同型写像となることを示した.これは本研究を発展させたLuttman and Tonevの結果の拡張となっている.もしも,それらの環がある種の近似単位元を有すれば,それらはBanach環として等距離同型であることも示した.一方で近似単位元の存在を仮定しないとき,Banach空間としては同型であるにも関わらず,Banach環としては同型でないような例を具体的に構成した.近年,非可換Banach環上のスペクトル保存写像の研究が活発になされているが,単一の写像ではなく,積のスペクトルを保存する写像の組を考えることにより,これまで独立に研究されてきた対号構造を考慮したスペクトル保存写像の研究を統一的に扱う手法を導入した.この研究論文以降,これまでの研究結果の本質がさらに鮮明になってきている.また摂動の定性の研究においては,乗法的汎関数のHyers-Ulam-Rassiasの意味での安定性を示すとともに,その写像が近似的環準同型写像であれば,それは真の環準同型写像であるか,または近似的零写像であることを示した.さらに積を一般化し,ある種の二項演算に対して同様の超安定性問題を考察し,その十分条件を与えるとともに,安定性に関する最良定数を決定した.

  • Research Products

    (12 results)

All 2010 2009

All Journal Article (7 results) (of which Peer Reviewed: 7 results) Presentation (5 results)

  • [Journal Article] On the root closedness of continuous function algebras2009

    • Author(s)
      K.Kawamura, T.Miura
    • Journal Title

      Topology Appl. 156

      Pages: 624-628

    • Peer Reviewed
  • [Journal Article] Peripherally monomial-preserving maps between uniform algebras2009

    • Author(s)
      O.Hatori, K.Hino, T.Miura, H.Oka
    • Journal Title

      Mediterr.J.Math. 6

      Pages: 47-60

    • Peer Reviewed
  • [Journal Article] Stability of almost multiplicative functionals2009

    • Author(s)
      N.Niwa, H.Oka, T.Miura, S.-E.Takahasi
    • Journal Title

      Aust.J.Math.Anal.Appl. 9

      Pages: 1-8

    • Peer Reviewed
  • [Journal Article] Peripheral multiplicativity of maps on uniformly closed algebras of continuous functions which vanish at infinity2009

    • Author(s)
      O.Hatori, T.Miura, H.Oka, H.Takagi
    • Journal Title

      Tokyo J.Math. 32

      Pages: 91-104

    • Peer Reviewed
  • [Journal Article] An estimate of the commutativity of C^2-functions and probability measure2009

    • Author(s)
      T.Miura, T.Hayata, S.-E.Takahasi
    • Journal Title

      J.Math.Inequal. 3

      Pages: 169-180

    • Peer Reviewed
  • [Journal Article] Superstability of generalized multiplicative functionals2009

    • Author(s)
      T.Miura, H.Takagi, M.Tsukada, S.-E.Takahasi
    • Journal Title

      J.Inequal.Appl.

      Pages: 1-7

    • Peer Reviewed
  • [Journal Article] A generalization of peripherally-multiplicative surjections between standard operator algebras2009

    • Author(s)
      T.Miura, D.Honma
    • Journal Title

      Cent.Eur.J.Math. 7

      Pages: 479-486

    • Peer Reviewed
  • [Presentation] 乗法的複素数値関数を超安定にさせる2項演算の決定2010

    • Author(s)
      高橋眞映, 三浦毅, 高木啓行
    • Organizer
      日本数学会
    • Place of Presentation
      慶応義塾大学
    • Year and Date
      2010-03-26
  • [Presentation] Standard operator algebra 上の peripheral spectrum 保存写像22009

    • Author(s)
      三浦毅
    • Organizer
      関数環研究集会
    • Place of Presentation
      日本大学
    • Year and Date
      2009-11-27
  • [Presentation] Volterra 型積分作用素の安定性2009

    • Author(s)
      三浦毅
    • Organizer
      局所コホモロジー加群およびその周辺09
    • Place of Presentation
      奈良教育大学
    • Year and Date
      2009-09-28
  • [Presentation] 複素数値関数の超安定性と2項演算2009

    • Author(s)
      高橋眞映, 三浦毅, 塚田真, 高木啓行
    • Organizer
      日本数学会
    • Place of Presentation
      大阪大学
    • Year and Date
      2009-09-25
  • [Presentation] Peripherally multiplicative surjections between uniform algebras2009

    • Author(s)
      三浦毅
    • Organizer
      American Mathematical Society
    • Place of Presentation
      San Francisco State University
    • Year and Date
      2009-04-26

URL: 

Published: 2011-06-16   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi