2021 Fiscal Year Annual Research Report
酸化還元特性を持つ膜小胞によるバイオフィルム活性の制御
Project/Area Number |
19F19406
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
岡本 章玄 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, グループリーダー (70710325)
|
Co-Investigator(Kenkyū-buntansha) |
MIRAN WAHEED 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, 外国人特別研究員
|
Project Period (FY) |
2019-11-08 – 2022-03-31
|
Keywords | Nitrogen fixing / Multi-heme Cytochrome C / Exciton coupling / Circular dichroism |
Outline of Annual Research Achievements |
The electrochemical reactor systems currently used for current production and drug testing involve relatively large volumes, making these systems infeasible for high-throughput screening of potential antimicrobials. We used screen-printed electrodes or multi-well electrode systems that require minimum amounts of sample and antimicrobials. Such systems that exploit the electrogenic activity of pathogens could fast-track the discovery of antibiofilm drugs, as a large library of compounds could be rapidly screened. This concept could serve as a generally applicable technology for evaluating the efficacy of antimicrobials, as well as the selection of appropriate drugs or treatment regimens. Our works extended the boundaries of EET field to other niches such as human pathogens. The orthologues of the identified EET genes in human pathogens are present in hundreds of species, thus EET activity likely occurred in an evolutionarily diverse subset of bacteria. Consequently, our research can help screen the effects of antimicrobials on biofilm activity by employing the current producing capability in wide range of electroactive pathogens.
|
Research Progress Status |
令和3年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和3年度が最終年度であるため、記入しない。
|