2021 Fiscal Year Annual Research Report
Analysis on nonlinear diffusion and dynamic singular structure
Project/Area Number |
19H00639
|
Research Institution | The University of Tokyo |
Principal Investigator |
儀我 美一 東京大学, 大学院数理科学研究科, 特任教授 (70144110)
|
Co-Investigator(Kenkyū-buntansha) |
山本 昌宏 東京大学, 大学院数理科学研究科, 教授 (50182647)
利根川 吉廣 東京工業大学, 理学院, 教授 (80296748)
三竹 大寿 東京大学, 大学院数理科学研究科, 准教授 (90631979)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | クリスタライン平均曲率流方程式 / 小林・ワレン・カーターエネルギー4階方程式 / 有界平均振動関数 |
Outline of Annual Research Achievements |
拡散・平滑化効果が非局所的な非線形拡散方程式を中心に、動的特異構造を許す弱解の概念を構築し、その解の性質を調べることを目的とする。典型的な動的特異構造として結晶成長分野の「ファセットを伴う成長」を扱った。次の5つのテーマについて研究成果をあげた。 1. 特異拡散方程式とその応用:クリスタライン平均曲率流方程式についてのこれまでの研究成果をまとめたサーベイ論文を執筆した。 2. 弱解の安定性と長時間挙動:4階のクリスタライン方程式について特殊な場合ではあるが、区分的線形の形状変化について記述することに成功した。また、任意の多角形から出発した平面クリスタライン流方程式の弱解(等高面解)は、瞬時にある種の許容多角形になることを示した。 3. 多粒界モデル:典型的なエネルギーである小林・ワレン・カーターエネルギーの特異極限を特徴づける。 4. 異常拡散現象:粘性解理論と超関数理論の比較を行った。 5. ナヴィエ・ストークス方程式:プリミティブ方程式を異方的ナヴィエ・ストークス方程式より厳密に導出した。方程式の数学解析の基礎であるヘルムホルツ分解を、有界平均振動関数の空間に対して行うことを可能とした。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
研究課題ごとに着実に成果をあげている。コロナ禍で対面での国際会議出席などは一部自粛してきたが、オンラインでの参加等によりその分を補ってきた。
|
Strategy for Future Research Activity |
課題ごとに成果を取りまとめつつ、国際会議等で積極的に成果を発表していく予定である。
|