• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Artifical Intelligence Assistance for Plant Breeding

Research Project

  • PDF
Project/Area Number 19H00938
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Review Section Medium-sized Section 39:Agricultural and environmental biology and related fields
Research InstitutionIwate University

Principal Investigator

Shimono Hiroyuki  岩手大学, 農学部, 教授 (70451490)

Co-Investigator(Kenkyū-buntansha) 岩田 洋佳  東京大学, 大学院農学生命科学研究科(農学部), 准教授 (00355489)
阿部 陽  公益財団法人岩手生物工学研究センター, ゲノム育種研究部, 主席研究員 (80503606)
金 天海  岩手大学, 理工学部, 准教授 (30424815)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywords人工知能 / 育種 / 多収 / ゲノム / 多型 / 成長モデル / 水稲
Outline of Final Research Achievements

We aimed to develop a system that assists breeding by using "artificial intelligence" for breeding. First, (1) as a standardization of "phenotype", we developed a platform to extract phenotypic cultivar characteristics as a regression coefficient for the environment from field big data of rice yield using a crop growth model. Subsequently, (2) as a standardization of "genotype", we constructed a genotype platform of 365 varieties / strains based on SNP data of 1.63 million locations. We also proposed (3) "Single epoch learning method" as learning with "artificial intelligence". Finally, (4) the standard accuracy was evaluated by fusing with the existing genomic prediction method and its crop model.

Free Research Field

作物学

Academic Significance and Societal Importance of the Research Achievements

地球温暖化により気候変動が拡大する中,その変化に適応できる新品種の育成が喫緊の課題である.本研究では,イネをモデル植物として,過去に蓄積された野外ビッグデータを再利用する新たな整理方法を提案するとともに,その表現型情報と遺伝子型情報について人工知能を用いてはじめて解析した試みに位置付けられる.今後は,イネ以外のダイズやコムギなど他の作物への応用とともに,さらに発展的に蓄積されたデータを利用し,情報を再解析することで農業生産上に有用な遺伝子領域の特定や,将来の気象条件に合わせた新品種の開発に寄与することが期待される.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi