• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

Geometry of the space of all variations of mixed Hodge structure over complex manifolds

Research Project

Project/Area Number 19H01787
Research InstitutionOsaka University

Principal Investigator

糟谷 久矢  大阪大学, 大学院理学研究科, 准教授 (80712611)

Co-Investigator(Kenkyū-buntansha) 後藤 竜司  大阪大学, 大学院理学研究科, 教授 (30252571)
藤野 修  京都大学, 理学研究科, 教授 (60324711)
Project Period (FY) 2019-04-01 – 2024-03-31
Keywords佐々木多様体 / ホッジ構造の変動
Outline of Annual Research Achievements

コンパクトケーラー多様体では純粋なホッジ構造の変動全体に値を取るようなDe Rham-Dolbeault Double Complexにテンソル構造から定まるDifferential Graded Algebraの構造を考え、そのSullivan Minimal ModelのMorganの混合ホッジ構造を用いて構築した非可換混合ホッジ構造を取り出すことができるということが本研究における最重要事実であるが、これをより広いクラスの空間で行えるようになることを目的に本年度では、コンパクトケーラー多様体の自然なアナロジーでありコンパクトケーラー多様体から拡張された様々なクラスと関連するコンパクト佐々木多様体について研究を行った。Indranil Biswas氏と糟谷で共同で行ったコンパクト佐々木多様体上の調和束とHiggs束の理論を用いて, 局所系のテンソル構造から定まるDifferential Graded Algebraの構造において特に重要なFormalityという性質について調べた。一般には佐々木多様体においては半単純局所系に値を取るDe Rham ComplexではFormalityが成立しないが、本研究ではAlmost-FormalityというFormalityにより近い性質を満たすことが示された。これにより5次元以上の佐々木多様体では基本群に関わるテンソル構造から定まるDifferential Graded Algebraの構造(低次の構造)についてはコンパクトケーラー多様体と同様に取り扱えることが見出された。
また、佐々木多様体上で純粋なホッジ構造の変動について理論の構築を行った。コンパクトケーラー多様体において重要であったuniformization型定理の佐々木版を確立することができた。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

特異性のある状況について未だ見通しの良い研究方策を打ち出せていないため。

Strategy for Future Research Activity

今後は多様体上で、ある種の特異性を持った混合ホッジ構造の変動全体の研究を行う。まず特異性のない場合と同様に対応する非可換混合ホッジ構造を取り出すことを目指す。特異性を持った純粋なホッジ構造の変動全体に関して、多様体の特異点を抜いた空間(Open Variery)あるいは特異点の情報を加味したカテゴリー(特にorbifold)上De Rham-Dolbeault Double Complexとして定義されるDifferential Graded Algebraの構造を考えて、そのSullivan Minimal ModelのMorganの混合ホッジ構造を構成する。ここから定まる代数的な混合ホッジ構造の変動モデルからある種の特異性を持った幾何学的な混合ホッジ構造の変動を構成する手法を構築する。

  • Research Products

    (9 results)

All 2023 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (2 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Toulouse University(フランス)

    • Country Name
      FRANCE
    • Counterpart Institution
      Toulouse University
  • [Int'l Joint Research] LMU Munchen(ドイツ)

    • Country Name
      GERMANY
    • Counterpart Institution
      LMU Munchen
  • [Int'l Joint Research] Cagliari University(イタリア)

    • Country Name
      ITALY
    • Counterpart Institution
      Cagliari University
  • [Journal Article] Cohomology of holomorphic line bundles and Hodge symmetry on Oeljeklaus--Toma manifolds2023

    • Author(s)
      Kasuya Hisashi
    • Journal Title

      European Journal of Mathematics

      Volume: 9 Pages: -

    • DOI

      10.1007/s40879-023-00646-9

    • Peer Reviewed
  • [Journal Article] Uniformizations of Compact Sasakian Manifolds2023

    • Author(s)
      Kasuya Hisashi、Miyatake Natsuo
    • Journal Title

      International Mathematics Research Notices

      Volume: - Pages: -

    • DOI

      10.1093/imrn/rnad227

    • Peer Reviewed
  • [Journal Article] Higgs bundles and flat connections over compact Sasakian manifolds, II: quasi-regular bundles2023

    • Author(s)
      Biswas Indranil、Kasuya Hisashi
    • Journal Title

      ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE

      Volume: - Pages: -

    • DOI

      10.2422/2036-2145.202203_024

    • Peer Reviewed
  • [Presentation] Higgs bundles and uniformizations of compact Sasakian manifolds.2023

    • Author(s)
      糟谷久矢
    • Organizer
      The 7th Workshop "Complex Geometry and Lie Groups"
    • Int'l Joint Research / Invited
  • [Presentation] Sasakian Geometry and Lie groups2023

    • Author(s)
      糟谷久矢
    • Organizer
      The 12th GTSS GEOMETRY-TOPOLOGY SUMMER SCHOOL
    • Int'l Joint Research / Invited
  • [Funded Workshop] Workshop on Complex Geometry in Osaka 20242023

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi