2021 Fiscal Year Annual Research Report
調和解析的方法によるディジタル・フィルタと非線形画像処理の研究及びその応用
Project/Area Number |
19H01801
|
Research Institution | Waseda University |
Principal Investigator |
新井 仁之 早稲田大学, 教育・総合科学学術院, 教授 (10175953)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 離散調和解析 / 2次元ディジタル・フィルタ / 画像処理 |
Outline of Annual Research Achievements |
2021年度の研究は,新型コロナウイルス感染症拡大のために方針を変更する必要性があった。そのため2022年度に繰り越して研究を行った。この変更により,繰り越し延長した2022年度は,ディジタル・フィルタの設計や各種の非線形的な画像処理の研究に,人工知能,特にたたみ込みニューラルネットワークを構築して応用することについて研究を進めた。 具体的には2次元ディジタル・フィルタや非線形的な画像処理への応用ならびに検証をどのようにすればよいかを検討した。そして,今回のニューラルネットワークの使用用途から,特定のデータを準備して,それをゼロから学習させるためのたたみ込みニューラルネットワークの構築をすることにした。そのため既存のものを参考にしつつ,本研究用のたたみ込みニューラルネットワークの構築を行った。さらに,これに関するプログラミングも何通りか行った。デバッグに時間がかかったが,それも行った。プログラミング言語としては,MATLABを使用した。その理由は,MATLABは本研究の基盤となる視知覚の数理モデリングならびにその各種画像処理への応用に関する研究代表者による研究でこれまで使用してきたものであり,そのプログラムやノウハウを援用できるからである。今回の繰り越し延長により,2022年度分の研究の実施のためのたたみ込みニューラルネットワークに関する基盤を作ることができた。また機械学習の学習用のデータの構築など2022年度の研究を行うための基盤を準備した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
研究方針変更のため,新たにたたみ込みニューラルネットワークの構築を行った。また機械学習用のデータ構築の基盤を準備した。
|
Strategy for Future Research Activity |
2021年度分の研究を2022年に繰り越して行った成果に基づき,(繰り越しでない)2022年度分の研究において,ディジタル・フィルタおよび非線形的な画像処理に関する研究を行っていく予定である。(なおその2022年度分の研究において判明したこと,およびそれに関する検討・対処については,2022年度分の研究実績報告書において報告予定である。)
|