• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Annual Research Report

Super random matrix theory and topological invariants

Research Project

Project/Area Number 19H01813
Research InstitutionOkinawa Institute of Science and Technology Graduate University

Principal Investigator

氷上 忍  沖縄科学技術大学院大学, 数理理論物理学ユニット, 教授 (30093298)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywords超対称 / ランダム行列 / 特異点
Outline of Annual Research Achievements

超対称ランダム行列によるトポロジカル不変量の研究として、不変量であるリーマン面のスピン曲線の交点数の研究を引き続きランダム行列に基づいて行った. 一般の種数gに対する交点数を導出する積分公式を精密化し、p-スピン曲線を半整数pに拡張する新たな積分公式を得た.
この積分公式が正しいことを示すため、いくつかの場合に具体的に交点数計算し、知られている結果との合致を確認した.
正整数pの場合はNeveu-Schwarz型のn=0,1,2,...,p-2に相当するn成分の交点数が得られ、Ramond型に相当するn=p-1は計算では分離するため得られない. それに対し、半整数pの場合はRamond成分が得られ、新しい共形場理論が構築されることが判明した. 特にp=1/2ではDirac型で、p=3/2はRarita-Schwinger型となる.
この応用として、近年発見された2次元トポロジカル半金属でスピンが3/2となる一連の物質群に適用することが考えられる.
半整数スピン1/2はフェルミオンであり、トポロジカル物質でのフェルミオン励起に相当する.具体的なARPESによる実験結果との比較を行った.
またこの新しい積分公式により、今まで議論されてきたADE特異性の内でA型(A_(p-1))をD型に拡張した交点数の表式を得た.交点数の種数gの大きい漸近式を得た。E6型の場合も行列模型による交点数の導出を研究した。

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

ADE特異点のA型にとどまらずD型の交点数の計算方法を見つける事が出来て、新しい発見があった.またラモンド型のスピン曲線もpが半整数の場合に見出せたことは予想外の新しい発見であった.

Strategy for Future Research Activity

新しい積分公式はD型特異点を記述し、リーマン面の境界に付随する開いた弦を対数項を含んだ行列模型と関係性を示すものである. 開いた弦であるゲージ理論を超対称行列模型でさらに研究する予定.
半整数p-スピン曲線と共形場理論の関係をさらに研究する.

  • Research Products

    (3 results)

All 2022 2021 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results)

  • [Int'l Joint Research] Ecole Normale Superiuere(フランス)

    • Country Name
      FRANCE
    • Counterpart Institution
      Ecole Normale Superiuere
  • [Journal Article] Punctures and p-spin curves from matrix models III; D_l type and logarithmic potential2022

    • Author(s)
      S. Hikami
    • Journal Title

      Journal Statistical Physics

      Volume: 188 Pages: -

    • DOI

      10.1007/s10955-022-02950-2

  • [Journal Article] Punctures and p-spin curves from matrix models II2021

    • Author(s)
      S. Hikami and E. Brezin
    • Journal Title

      Journal Statistical Physics

      Volume: 183 Pages: -

    • DOI

      10.1007/s10955-021-02776-4

    • Peer Reviewed / Open Access / Int'l Joint Research

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi